
Information and Inference: A Journal of the IMA (2015) Page 1 of 40
doi:10.1093/imaiai/drn000

CGIHT: Conjugate Gradient Iterative Hard Thresholding
for Compressed Sensing and Matrix Completion

JEFFREY D. BLANCHARD∗,
Grinnell College, Department of Mathematics and Statistics, Grinnell, IA 50112

∗Corresponding author: jeff@math.grinnell.edu
JARED TANNER and KE WEI

University of Oxford, Mathematics Institute, Andrew Wiles Building,
Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG

tanner@maths.ox.ac.uk and wei@maths.ox.ac.uk

To Eitan Tadmor in honour of his 60th birthday with thanks for his mentorship and support.

[Received on 2 October 2015]

We introduce the Conjugate Gradient Iterative Hard Thresholding (CGIHT) family of algorithms for
the efficient solution of constrained underdetermined linear systems of equations arising in compressed
sensing, row sparse approximation, and matrix completion. CGIHT is designed to balance the low per
iteration complexity of simple hard thresholding algorithms with the fast asymptotic convergence rate
of employing the conjugate gradient method. We establish provable recovery guarantees and stability to
noise for variants of CGIHT with sufficient conditions in terms of the restricted isometry constants of
the sensing operators. Extensive empirical performance comparisons establish significant computational
advantages for CGIHT both in terms of the size of problems which can be accurately approximated and
in terms of overall computation time.

Keywords:

Compressed Sensing, Matrix Completion, Row Sparse Approximation, Multiple Measurement Vectors,
Hard Thresholding Algorithm, Conjugate Gradient Iterative Hard Thresholding, Restricted Isometry
Constants
2010 Math Subject Classification: 41A99, 49N45, 62F30, 65F10, 65F22, 68P30, 90C26, 94A20

1. Introduction

Methods for more efficient data acquisition have received renewed interest in the information commu-
nity. This greater efficiency is typically achieved by using a low dimensional model of high dimensional
data and exploiting the simplicity of the underlying low dimensional model. The prevalence of low
dimensional approximations is fundamental to modern compression algorithms and is a cornerstone to
efficient analysis and sharing of big data. Two notable examples of techniques which allow for more
efficient data acquisition through the existence of such low dimensional models are: compressed sens-
ing where data known to be compressible in a given basis can be measured at a rate proportional to
the desired compression rate rather than the high dimension containing the data [20, 32], and low rank
matrix completion [19, 74] where suitable matrices known to be approximately low rank can be deter-
mined from a number of its entries which is proportional to the number of degrees of freedom of the
low rank approximation rather than the full number of entries of the matrix. Particularly remarkable
to these techniques is that the information can be acquired from linear measurements which do not

c© The author 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

2 of 40 JEFFREY D. BLANCHARD, JARED TANNER, AND KE WEI

resort to learning from prior measurements. Compressed sensing and low rank matrix completion can
be cast most directly as non-convex optimization problems which seek to find a simple solution to an
underdetermined system of linear equations.

In its simplest form, compressed sensing [21, 22, 32] considers the recovery of a sparse vector
with few nonzeros from a number of linear measurements that is less than the length of the vector.
Let x be a vector with at most k nonzero entries, denoted ‖x‖0 6 k where ‖x‖0 counts the number of
nonzero entries in x. Let the sensing operator A ∈ Rm×n be a matrix from which we obtain the m < n
measurements y = Ax. Then the compressed sensing problem attempts to recover the vector with no
more than k nonzeros that fits the measurements as well as possible:

min
z∈Rn
‖y−Az‖2 subject to ‖z‖0 6 k. (1.1)

A variant of compressed sensing considers using a single measurement matrix A to measure multiple
sparse vectors whose locations of nonzero values primarily coincide and is referred to as compressed
sensing for multiple measurement vectors or joint sparsity [61, 63, 78, 80, 81]. Let the r measured
vectors be organized as the columns of a row sparse matrix X ∈ Rn×r with at most k rows containing
nonzero entries, i.e. ‖X‖R0 6 k where ‖X‖R0 counts the number of rows in X with at least one nonzero
entry. As in the compressed sensing problem, let the sensing operator A ∈Rm×n be a matrix from which
the measurements Y = AX are obtained. The compressed sensing problem for row-sparse matrices
attempts to recover the matrix with no more than k nonzero rows that fits the measurements as well as
possible:

min
Z∈Rn×r

‖Y −AZ‖2 subject to ‖Z‖R0 6 k. (1.2)

Approximation of row-sparse matrices can be viewed as an intermediate case between traditional com-
pressed sensing of a single vector, recovering (1.1) when r = 1, and matrix completion. In row-sparse
matrix approximation the matrix X is assumed to have an r–dimensional image space with at most k
nonzeros, whereas in matrix completion the image space of X is assumed to be r dimensional but in an
unknown subspace which is determined from the leading r left singular vectors of X .

In matrix completion, rather than the sparsity assumption of compressed sensing, the observed
matrix is assumed to be low rank. Let X ∈ Rm×n and assume rank(X) = r < min(m,n). Let the sensing
operator A (·) : Rm×n→ Rp be a linear map consisting of p matrices Ai ∈ Rm×n for i = 1,2, . . . , p. We
take p < mn linear measurements of the low rank matrix X via y = A (X) where yi = trace(A∗i X) =
〈Ai,X〉F . The matrix completion problem attempts to recover the matrix of rank no more than r that fits
the measurements as well as possible:

min
Z∈Rm×n

‖y−A (Z)‖2 subject to rank(Z)6 r. (1.3)

When the set of matrices {Ai : 1 6 i 6 p} are each composed of a single nonzero entry of value 1
in position si, ti, the linear measurement from the Frobenius inner product simply returns the entry
〈Ai,X〉F = Xsi,ti . This is referred to as entry sensing. On the other hand, dense sensing occurs when
the set {Ai : 1 6 i 6 p} contains dense matrices and the full Frobenius inner product, 〈Ai,X〉F :=
∑

m
j=1 ∑

n
`=1 Ai(j, `)X(j, `), is required for each measurement.

Though each of questions (1.1)-(1.3) are known to be NP hard for general sensing operators [68], a
considerable theory has been developed establishing the existence of both sensing operators and recov-
ery algorithms which produce arbitrarily accurate approximations to these questions. These advances
are particularly striking in terms of the favorable features of the sensing operators and the recovery

CONJUGATE GRADIENT ITERATIVE HARD THRESHOLDING 3 of 40

algorithms. Suitable sensing operators are ubiquitous and include matrices with highly advantageous
properties such as being sparse or having fast and structured matrix products [2, 7, 23, 73, 74]. Fur-
thermore, many algorithms with polynomial computational complexity have theoretical guarantees of
successfully recovering the measured data even when the number of measurements is no more than a
constant multiple of the degrees of freedom in the object class. See Sec. 2.3 for a partial review with
surveys and in depth discussions of these advances and their applications given in [17, 43, 48, 82].

The rapid development of algorithms for the computationally efficient solution to (1.1)-(1.3) has
produced numerous effective algorithms with varying sophistication and performance characteristics.
One of the most widely studied class of algorithms is to reformulate the nonconvex problems (1.1)-(1.3)
by their nearest convex relaxation, and then to use algorithms for the associated standard class of convex
optimization problems: linear, quadratic, and semidefinite programming. This approach has been shown
to be highly efficient and amenable to a detailed analysis allowing the precise determination of when
these classes of algorithms do, or do not, recover the solution to (1.1)-(1.3), [1, 31, 41, 42, 85]. In
this manuscript we consider an alternative class of algorithms that attempt to directly solve the original
nonconvex questions (1.1)-(1.3) through alternating projection [62] where an approximate solution is
iteratively updated by decreasing the quadratic objective along a descent direction, while allowing the
update to violate the sparsity or low rank constraint, followed by projection onto the objective constraint
of sparse or low rank matrices. The projection step is known as hard thresholding, and algorithms with
this alternating projection construction are referred to as hard thresholding algorithms. Specifically we
present new algorithms that balance the benefits of low per iteration complexity with fast asymptotic
convergence rates. The newly proposed algorithms are proven to have uniform recovery guarantees
analogous to other hard thresholding algorithms, and to nearly uniformly have superior average case
runtime complexity.

2. Main Contributions: CGIHT

We present new algorithms, for the solution to (1.1)-(1.3), which we refer to collectively as Conjugate
Gradient Iterative Hard Thresholding (CGIHT). CGIHT is designed to balance the advantage of the low
per iteration complexity of methods based on steepest descent with the fast asymptotic convergence rate
of methods employing the conjugate gradient method to minimize the quadratic objective in (1.1)-(1.3)
when the support set or subspace is held fixed. CGIHT is observed to be able to solve (1.1)-(1.3) to any
fixed accuracy in less time than existing algorithms. Moreover, despite the added complexity of CGIHT
making explicit use of past update directions, there are variants of CGIHT with provable recovery guar-
antees analogous to those of other hard thresholding algorithms. The variants of CGIHT for compressed
sensing (1.1)-(1.2) and matrix completion (1.3) are stated in Sec. 2.1 and Sec. 2.2 respectively. CGIHT
is put in context with other hard thresholding algorithms in Sec. 2.3. An in-depth empirical investiga-
tion of CGIHT follows in Sec. 3. The manuscript concludes with the proof of the recovery theorems for
CGIHT in Sec. 4.

2.1 CGIHT for compressed sensing (1.1)-(1.2)

We begin our presentation of CGIHT for compressed sensing with its simplest variant, Alg. 1. In each
iteration of CGIHT the current estimate xl−1 is updated along the direction pl−1, using a stepsize αl−1,
followed by hard thresholding onto the space of vectors with at most k nonzeros. Computationally the
hard thresholding operator is composed of two parts. First the principal support of the approximation
is identified, then the object is projected onto the principal support. The principal support identification

4 of 40 JEFFREY D. BLANCHARD, JARED TANNER, AND KE WEI

of cardinality k, denoted here in pseudo-code by PrincipalSupportk(·), is arrived at by sorting
(or computing order statistics) of the `2 norm of the rows. Projecting onto the principal support set T ,
denoted here in pseudo-code by ProjT (·), follows by setting to zero all entries not on the (row) support
set T . The search direction pl−1 is selected to be exactly the residual r0 in iteration l = 1, and is otherwise
selected to be the residual rl−1 projected to be conjugate orthogonal to the past search direction pl−2
when restricted to the current estimate of the support set Tl−1, i.e. 〈AProjTl−1

(pl−1),AProjTl−1
(pl−2)〉=

0. This procedure is analogous to the conjugate gradient method. For a square system with k = m = n,
Alg. 1 will exactly execute the conjugate gradient method [54]. For the compressed sensing regime with
k < m < n, Alg. 1 lacks some of the important properties of the standard conjugate gradient method.
In particular, the search directions do not in general remain orthogonal, except in the simplest case
where the support set never changes [72, 87]. Lacking the orthogonalization property over all past
support sets precludes the use of the most efficient formulae for computing conjugate gradient stepsizes
αl−1 and orthogonalization weights βl−1, resulting in one additional matrix vector product per iteration.
Additionally, this simplest variant of CGIHT lacks a proof of convergence to the measured k sparse
vector. Despite these shortcomings, Alg. 1 is often observed to have superior performance to other
variants of CGIHT in terms of both the problem size (k,m,n) it is able to recover and being able to
recover the measured vector in less time than other variants of CGIHT.

Algorithm 1 CGIHT for compressed sensing
Initialization: Set T−1 = {}, p−1 = 0, w−1 = A∗y, T0 = PrincipalSupportk(|w−1|),
x0 = ProjT0

(w−1), and l = 1.
Iteration: During iteration l, do

1: rl−1 = A∗(y−Axl−1) (compute the residual)
2: if l = 1,

βl−1 = 0 (set orthogonalization weight)
else

βl−1 =−
〈

AProjTl−1
(rl−1),AProjTl−1

(pl−2)
〉

〈
AProjTl−1

(pl−2),AProjTl−1
(pl−2)

〉 (compute orthogonalization weight)

3: pl−1 = rl−1 +βl−1 pl−2 (define the search direction)

4: αl−1 =

〈
ProjTl−1

(rl−1),ProjTl−1
(pl−1)

〉
〈

AProjTl−1
(pl−1),AProjTl−1

(pl−1)
〉 (optimal stepsize if Tl−1 = T∗)

5: wl−1 = xl−1 +αl−1 pl−1 (update along search direction)
6: Tl = PrincipalSupportk(|wl−1|) (support set of k largest entries)
7: xl = ProjTl

(wl−1) (restriction to support set Tl)

To recover the conjugate gradient property that past search directions maintain orthogonality over
a sequence of iterates acting on the same support set requires restarting the conjugate gradient method
when the support Tl−1 changes. The remaining two variants of CGIHT for compressed sensing are
designed with such restarting conditions. Moreover, we are able to provide optimal order recovery
proofs, similar to other hard thresholding algorithms for (1.1), in terms of the restricted isometry con-
stants (RICs) of the the measurement matrix; see Def. 2.1.

DEFINITION 2.1 (Asymmetric restricted isometry constants for sparse vectors) For an m×n matrix A,
the asymmetric restricted isometry constants L(k,m,n) and U(k,m,n) for k sparse vectors are defined

CONJUGATE GRADIENT ITERATIVE HARD THRESHOLDING 5 of 40

as:

Lk = L(k,m,n) := min
c>0

c subject to (1− c)6 ‖Ax‖2
2/‖x‖2

2, for all ‖x‖0 6 k (2.1)

Uk =U(k,m,n) := min
c>0

c subject to (1+ c)> ‖Ax‖2
2 /‖x‖

2
2, for all ‖x‖0 6 k. (2.2)

The first of these variants of CGIHT with provably optimal order recovery guarantees is referred to
as CGIHT restarted, Alg. 2. The first iteration, l = 1, of Alg. 1 and Alg. 2 are identical. Subsequent itera-
tions differ in their choice of search directions. Alg. 2 uses the residual rl−1 as its search direction in any
iteration where the support set differs from that of the prior iteration, Tl−1 6= Tl−2. However, in iterations
where the support set Tl−1 is the same as at the prior iteration, the search direction pl−1 is selected to be
the residual rl−1 projected to be conjugate orthogonal to the past search direction pl−2 when restricted to
the support set Tl−1. Starting each instance of the orthogonalization with the first search direction hav-
ing been the residual recovers the orthogonalization of all search directions over sequences of iterations
where the support set remains unchanged; that is,

〈
AProjTl−1

(pl−1),AProjTl−1
(pl− j)

〉
= 0 for j from 2

increasing until the first value of j such that Tl− j 6= Tl−1. Recovering this orthogonalization property
allows the use of efficient formulae for computing the stepsize αl−1 and orthogonalization weight βl−1
which reduces the per iteration complexity by one matrix vector product.

Algorithm 2 CGIHT restarted for compressed sensing
Initialization: Set T−1 = {}, p−1 = 0, w−1 = A∗y, T0 = PrincipalSupportk(|w−1|),
x0 = ProjT0

(w−1), and l = 1.
Iteration: During iteration l, do

1: rl−1 = A∗(y−Axl−1) (compute the residual)
2: if Tl−1 6= Tl−2

βl−1 = 0 (set orthogonalization weight)
else

βl−1 =
‖ProjTl−1

(rl−1)‖2

‖ProjTl−1
(rl−2)‖2

(compute orthogonalization weight)

3: pl−1 = rl−1 +βl−1 pl−2 (define the search direction)

4: αl−1 =
‖ProjTl−1

(rl−1)‖2

‖AProjTl−1
(pl−1)‖2

(optimal stepsize if Tl−1 = T∗)

5: wl−1 = xl−1 +αl−1 pl−1 (update along search direction)
6: Tl = PrincipalSupportk(|wl−1|) (support set of k largest entries)
7: xl = ProjTl

(wl−1) (restriction to support set Tl)

The recovery guarantee for Alg. 2, Thm. 2.2, considers the typical signal model y = Ax+ e where x
has at most k nonzeros. In this model x can be viewed as the k sparse vector which minimizes ‖y−Ax‖2
and e as the discrepancy between y and Ax. Alternatively x can be viewed as a k sparse vector measured
by A and that y is contaminated by additive noise; though, in this perspective, Thm. 2.2 does not consider
any particular model for e.

THEOREM 2.2 (Recovery guarantee for CGIHT restarted for compressed sensing, Alg. 2.) Let A be
an m× n matrix with m < n, and y = Ax+ e for any x with at most k nonzeros. Define the following

6 of 40 JEFFREY D. BLANCHARD, JARED TANNER, AND KE WEI

constants in terms of the RICs of A:

τ1 = 2
U3k +L3k

1−Lk
+

(1+Uk)(Uk +Lk)

(1−Lk)2 , τ2 =
2(1−L3k)(1+Uk)(Uk +Lk)

(1−Lk)3 ,

µ =
1
2

(
τ1 +

√
τ2

1 +4τ2

)
, ξ = 2

(1+U2k)
1/2

1−Lk
. (2.3)

If the RICs of A satisfy
(L3k +U3k)(5−2Lk +3Uk)

(1−Lk)2 < 1, (2.4)

then µ < 1 and the iterates of Alg. 2 satisfy

‖xl− x‖2 6 µ
l‖x0− x‖+ ξ

1−µ
‖e‖. (2.5)

The proof of Thm. 2.2 is given in Sec. 4.1. Thm. 2.2 implies that if e = 0, the correct support set
of x will be identified after logarithmically many iterations [8]. Moreover, once the correct support set
is identified, CGIHT is simply the conjugate gradient method applied to the overdetermined system of
equations using the submatrix Asupp(x) containing only the columns indexed by the set supp(x); thus

the asymptotic convergence rate is linear with a rate given by
√

κ−1√
κ+1 where κ = cond(A∗supp(x)Asupp(x)).

Note that this asymptotic convergence rate is much smaller than the rate µ given in Thm. 2.2; the rate µ

defined in Thm. 2.2 indicates instead the minimum rate of `2 error contraction per iteration, including
iterations where the support set is incorrect. Algorithm 2 can also be used to obtain the approximate
solution of (1.2) by replacing the vector x with the row-sparse matrix X , PrincipalSupportk(·)
determining k rows of largest `2 norm, ProjT (·) setting to zero all but the entries in rows indexed by T ,
and all norms being the Frobenius norm. Theorem 2.2 similarly holds for the solution of (1.2), although
this worst-case uniform guarantee fails to illustrate the improved performance exhibited for X with rank
greater than 1.

As an alternative to the support set based restarting condition of Alg. 2, the conjugate gradient
method can be restarted based on a measure of the relative residual for a current support set. CGIHT
projected, Alg. 3, corresponds to nonlinear restarted conjugate gradient where restarting occurs when∥∥∥rl−1−ProjTl−1

(pl−1)
∥∥∥/‖ProjTl−1

(rl−1)‖ is sufficiently large. This restarting condition corresponds to
the fraction of the current residual aligned with the current search direction, relative to the magnitude of
the residual on the current support set. Unlike Alg. 2 which has no tuning parameters, CGIHT projected
has a restarting parameter θ controlling the computational effort used to decrease the residual on a given
support set.

THEOREM 2.3 (Recovery guarantee for CGIHT projected for compressed sensing, Alg. 3.) Let A be
an m× n matrix with m < n, and y = Ax+ e for any x with at most k nonzeros. Define the following
constants in terms of the RICs of A and the restarting parameter c:

µ = 2(1+ c)
U3k +L3k

1−Lk
, θ0 = c

(
U3k +L3k

1+U2k

)
, and ξ = 2(1+θ0)

(1+U2k)
1/2

1−Lk
.

Then provided µ < 1, the iterates of Alg. 3 with restarting condition θ < θ0 satisfy

‖xl− x‖6 µ
l‖x0− x‖+ ξ

1−µ
‖e‖. (2.6)

CONJUGATE GRADIENT ITERATIVE HARD THRESHOLDING 7 of 40

Algorithm 3 CGIHT projected for compressed sensing
Initialization: Set T−1 = {}, w−1 = A∗y, T0 = PrincipalSupportk(|w−1|), x0 = ProjT0

(w−1),
r0 = A∗(y−Ax0), p0 = r0, Restart flag = 1, set restart parameter θ , and l = 1.
Iteration: During iteration l, do

1: if

∥∥∥rl−1−ProjTl−1
(pl−1)

∥∥∥
‖ProjTl−1

(rl−1)‖
> θ

Restart flag = 1 (set restart flag)

αl−1 =

∥∥∥ProjTl−1
(rl−1)

∥∥∥2

∥∥∥AProjTl−1
(rl−1)

∥∥∥2 (optimal stepsize if Tl−1 = T∗)

wl−1 = xl−1 +αl−1rl−1 (update along unprojected search direction)
else

Restart flag = 0 (set restart flag)

αl−1 =

∥∥∥ProjTl−1
(rl−1)

∥∥∥2

∥∥∥AProjTl−1
(pl−1)

∥∥∥2 (optimal stepsize if Tl−1 = T∗)

wl−1 = xl−1 +αl−1ProjTl−1
(pl−1) (update along projected search direction)

2: Tl = PrincipalSupportk(wl−1) (support set of k largest entries)
3: xl = ProjTl

(wl−1) (restriction to support set Tl)
4: rl = A∗(y−Axl) (compute the residual)
5: if Restart flag = 1,

pl = rl (define the unprojected search direction)
else

βl =

∥∥∥ProjTl
(rl)
∥∥∥2

∥∥∥ProjTl
(rl−1)

∥∥∥2 (compute orthogonalization weight)

pl = rl +βlProjTl
(pl−1) (define the projected search direction)

The proof of Thm. 2.3 follows the proof of its matrix completion variant which is given in Sec. 4.2.
Again, Alg. 3 has a straightforward extension to the row-sparse approximation problem (1.2) with a
uniform guarantee given by Thm. 2.3.

2.2 CGIHT for matrix completion (1.3)

We begin our discussion of CGIHT for matrix completion with its simplest variant, Alg. 4, which mirrors
Alg. 1. In each iteration of CGIHT the current estimate Xl−1 is updated along the direction Pl−1, using
a stepsize αl−1, followed by hard thresholding to the matrix of rank at most r that is nearest in the
Frobenius norm. Computationally the hard thresholding operator is composed of two parts. First the
principal subspace is identified, then the object is projected onto the principal subspace. The principal
subspace identification of rank r can be identified in terms of either its column or row space. Here we
make use of the column space, using the leading r left singular vectors, denoted here in pseudo-code
by PrincipalLeftSingularVectorsr(·); use of the right singular space in algorithms to solve
(1.3) is discussed in [58, 77]. Projecting onto the principal subspace U , denoted here in pseudo-code by
ProjU (·), follows by multiplying from the left by the projection matrix UU∗, or by forming the rank r
approximation by computing its singular valued decomposition (SVD), UΣV , setting to zero all but its
leading r singular values in Σ , and reforming the product of the three SVD matrices [55]. As in Alg. 1,

8 of 40 JEFFREY D. BLANCHARD, JARED TANNER, AND KE WEI

the search direction Pl−1 is selected to be exactly the residual R0 in iteration l = 1, and is otherwise
selected to be the residual Rl−1 projected to be conjugate orthogonal to the past search direction when
restricted to the current estimate of the subspace Ul−1. As with Alg. 1, Alg. 4 lacks the conjugate
gradient property of past search directions remaining mutually orthogonal. In fact, as the subspaces
are continuously varying, there will typically be no two past subspaces Ul and Ul−1 which will be
identical, and consequently only the past two search directions will remain orthogonal. Despite lacking
orthogonalization over longer sequences of iterates, Alg. 4 nearly always has superior performance to
the other variant of CGIHT for matrix completion in terms of both the problem size (r,m,n, p) it is
able to recover and being able to recover the measured matrix in less time than the restarted variant of
CGIHT.

Algorithm 4 CGIHT for matrix completion
Initialization: Set P−1 = 0, W−1 = A ∗(y),
U0 = PrincipalLeftSingularVectorsr(W−1), X0 = ProjU0

(W−1), and l = 1.
Iteration: During iteration l, do

1: Rl−1 = A ∗ (y−A (Xl−1)) (compute the residual)
2: if l = 1,

βl−1 = 0, (set orthogonalization weight)
else

βl−1 =−
〈
A
(

ProjUl−1
(Rl−1)

)
,A
(

ProjUl−1
(Pl−2)

)〉
〈
A
(

ProjUl−1
(Pl−2)

)
,A
(

ProjUl−1
(Pl−2)

)〉 (compute orthogonalization weight)

3: Pl−1 = Rl−1 +βl−1Pl−2 (define the search direction)

4: αl−1 =

〈
ProjUl−1

(Rl−1),ProjUl−1
(Pl−1)

〉
〈
A
(

ProjUl−1
(Pl−1)

)
,A
(

ProjUl−1
(Pl−1)

)〉 (optimal stepsize if Ul−1 =U∗)

5: Wl−1 = Xl−1 +αl−1Pl−1 (steepest descent or conjugate gradient step)
6: Ul = PrincipalLeftSingularVectorsr(Wl−1) (first r left singular vectors)
7: Xl = ProjUl

(Wl−1) (restriction to r-dimensional column space Ul)

As alluded to earlier, matrix completion (1.3) differs from (1.1)-(1.2) fundamentally in that the sub-
space of low rank matrices is a continuously varying manifold whereas the subspace of (row) sparsity is
finite dimensional being composed of

(n
k

)
linear subspaces corresponding to the possible support sets. As

a consequence, the subspaces Ul−1 and Ul−2 will typically never be exactly the same and there is no exact
analog of Alg. 2 for matrix completion. However, the relative residual restarting condition of CGIHT
projected, Alg. 3, extends to matrix completion in Alg. 5, which we refer to as CGIHT projected for
matrix completion. Similar to Alg. 3, CGIHT projected for matrix completion corresponds to nonlinear
restarted conjugate gradient where restarting occurs when

∥∥∥Rl−1−ProjUl−1
(Pl−1)

∥∥∥/‖ProjUl−1
(Rl−1)‖

is sufficiently large; see Alg. 5. This restarting condition corresponds to the component of the search
direction Pl−1 contained in the image space of Xl−1 minus Rl−1 being small in the Frobenius norm when
compared with the size of the residual contained in the image space of Xl−1. Unlike CGIHT for matrix
completion, Alg. 4, which has no tuning parameters, CGIHT projected has a restarting parameter θ

controlling the computational effort used to decrease the residual on a given subspace. As stated in
Thm. 2.5, CGIHT projected has a uniform recovery guarantee for low rank matrix approximation (1.3)
provided the sensing operator A has sufficiently small RICs for low rank matrices; see Def. 2.4.

DEFINITION 2.4 For a linear map A (·) : Rm×n→Rp, the restricted isometry constants L(r,m,n, p) and

CONJUGATE GRADIENT ITERATIVE HARD THRESHOLDING 9 of 40

Algorithm 5 CGIHT projected for matrix completion
Initialization: Set W−1 = A ∗(y), U0 = PrincipalLeftSingularVectorsr(W−1),
X0 = ProjU0

(W−1), R0 = A ∗ (y−A (X0)), P0 = R0, Restart flag = 1,
set restart parameter θ , and l = 1.
Iteration: During iteration l, do

1: if

∥∥∥Rl−1−ProjUl−1
(Pl−1)

∥∥∥
‖ProjUl−1

(Rl−1)‖
> θ

Restart flag = 1 (set restart flag)

αl−1 =

∥∥∥ProjUl−1
(Rl−1)

∥∥∥2

∥∥∥A (ProjUl−1
(Rl−1)

)∥∥∥2 (optimal stepsize if Ul−1 =U∗)

Wl−1 = Xl−1 +αl−1Rl−1 (update along unprojected search direction)
else

Restart flag = 0 (set restart flag)

αl−1 =

∥∥∥ProjUl−1
(Rl−1)

∥∥∥2

∥∥∥A (ProjUl−1
(Pl−1)

)∥∥∥2 (optimal stepsize if Ul−1 =U∗)

Wl−1 = Xl−1 +αl−1ProjUl−1
(Pl−1) (update along projected search direction)

2: Ul = PrincipalLeftSingularVectorsr(Wl−1) (first r left singular vectors)
3: Xl = ProjUl

(Wl−1) (restriction to r-dimensional column space Ul)
4: Rl = A ∗ (y−A (Xl)) (compute the residual)
5: if Restart flag = 1,

Pl = Rl (define the unprojected search direction)
else

βl =

∥∥∥ProjUl
(Rl)

∥∥∥2

∥∥∥ProjUl
(Rl−1)

∥∥∥2 (compute orthogonalization weight)

Pl = Rl +βlProjUl
(Pl−1) (define the projected search direction)

U(r,m,n, p) for rank r matrices are defined as:

Lr = L(r,m,n, p) := min
c>0

c subject to (1− c)6 ‖A (X)‖2
2/‖X‖2

F , for all rank(X)6 r (2.7)

Ur =U(r,m,n, p) := min
c>0

c subject to (1+ c)> ‖A (X)‖2
2 /‖X‖

2
F , for all rank(X)6 r. (2.8)

As in Thm. 2.2, Thm. 2.5 considers the model y = A (X)+ e where rank(X) 6 r. In this model X
is typically viewed as the rank r matrix which minimizes ‖y−A (X)‖2 and e as the measurement error
associated with restricting X to be at most rank r. Alternatively X can be viewed as a rank r matrix
measured by A and that y is contaminated by additive noise; though, in this perspective, Thm. 2.5 does
not consider any particular model for e.

THEOREM 2.5 (Recovery guarantee for CGIHT projected for matrix completion, Alg. 5.) Let A be a
linear map from Rm×n to Rp with p < mn, and y = A (X)+ e for any X with rank(X) 6 r. Define the
following constants in terms of the RICs of A and the restarting parameter c:

µ = 2(1+ c)
U3r +L3r

1−Lr
, θ0 = c

(
U3r +L3r

1+U2r

)
, and ξ = 2(1+θ0)

(1+U2r)
1/2

1−Lr
.

10 of 40 JEFFREY D. BLANCHARD, JARED TANNER, AND KE WEI

Then provided µ < 1, the iterates of Alg. 5 with restarting condition θ < θ0 satisfy

‖Xl−X‖6 µ
l‖X0−X‖+ ξ

1−µ
‖e‖. (2.9)

Theorem 2.5 implies that if e= 0, CGIHT projected for matrix completion will recover the measured
rank r matrix to arbitrary accuracy. As the manifold of rank r matrices is continuously varying, Alg. 5
will never exactly identify the correct image space, and does not exactly correspond to a traditional
numerical linear algebra routine for computing a low rank matrix approximation. However, in iterations
where the Restart flag = 0, Alg. 5 does correspond to solving for the low rank approximation with a
specified image space corresponding to that of Ul−1.

2.3 Discussion and prior art

The simplest example of iterative hard thresholding algorithms for compressed sensing (1.1) is referred
to simply as Iterative Hard Thresholding (IHT) [15, 49], and corresponds to Alg. 6, with the stepsize ω

held constant; typically set to be 1. IHT extends naturally to row sparsity (1.2) [9] and matrix completion
(1.3) where it is referred to as either IHT [59, 64] or Singular Value Projection [56]. For each of (1.1)-
(1.3), the performance of IHT [37] depends heavily on the selection of the stepsize ωl . If the stepsize
is selected to be too large the method can diverge, whereas overly small values of ωl can result in slow
convergence or convergence to a local minima rather than the desired global minima [24]. Normalized
IHT (NIHT) [9, 16, 77] provides a formula for adaptively computing the stepsize; see Alg. 6 for NIHT
for compressed sensing (1.1) where the stepsize ωl is selected to be optimal if supp(xl−1) = supp(x).

Algorithm 6 NIHT (Normalized Iterative Hard Thresholding [16])
Initialization: Set w−1 = A∗y, T0 = PrincipalSupportk(|w−1|), x0 = ProjT0

(w−1), and l = 1.
Iteration: During iteration l, do

1: rl−1 = A∗(y−Axl−1) (update the residual)

2: ωl =
‖ProjTl−1

(rl−1)‖2

‖AProjTl−1
(rl−1)‖2

(optimal stepsize in the k-subspace Tl−1)

3: wl−1 = xl−1 +ωlrl−1 (steepest descent step)
4: Tl = PrincipalSupportk(xl) (proxy to the support set)
5: xl = ProjTl

(wl−1) (restriction to support set Tl)

Despite the simplicity of IHT and NIHT, they have numerous near optimal properties. (N)IHT has
been proven, for suitable linear sensing operators, to be able to recover the solution to (1.1)-(1.2) from
a number of measurements that is proportional to the (row) sparsity of the measured data [9, 16], and to
recover the solution to (1.3) from within a logarithmic factor of the number of degrees of freedom of rank
r matrices [77]. Moreover, for numerous measurement operators, NIHT is observed to be able to solve
(1.1)-(1.3) for the same problem sizes as more sophisticated algorithms, and is often able solve (1.1)-
(1.3) to moderate accuracy in less computational time than can more sophisticated variants. However,
NIHT suffers from the slow asymptotic convergence rate of the steepest descent method if the sensing
operator is ill conditioned when restricted to the subspace of the measured data. For example, Alg. 6
for (1.1) has an asymptotic convergence rate per iteration of κ−1

κ+1 where κ = cond(A∗supp(x)Asupp(x)); this

is in contrast to the asymptotic convergence rate of
√

κ−1√
κ+1 for each variant of CGIHT for compressed

sensing, Algs. 1–3.

CONJUGATE GRADIENT ITERATIVE HARD THRESHOLDING 11 of 40

Many of the more sophisticated hard thresholding algorithms have been designed in part to overcome
this slow asymptotic convergence rate of NIHT. These more advanced algorithms typically achieve
this with the inclusion of the conjugate gradient method [51, 54] to solve for the local minima of the
objective in (1.1)–(1.3) while the sparse or low rank subspace is held fixed. A highly incomplete list
of examples of such methods are: [28, 45, 69] for (1.1), which have been extended to (1.2) in [9] and
examples for (1.3) include [29, 59, 60]. Though such methods gain the fast convergence of the conjugate
gradient method, they do so at the cost of higher per iteration complexity. It is observed in [12] that
when (1.1) is solved to moderate accuracy, ‖y−Ax̂‖2/‖y‖2 ≈ 10−4, the disadvantage of the higher per
iteration complexity causes early iterations, where the support set is typically changing, to result in an
overall average computational time that is often as long or longer than that of NIHT. When approximate
solutions are sought with ‖y− Ax̂‖2/‖y‖2 � 10−4, NIHT requires even less computational time as
compared with more sophisticated algorithms due to the support set identification portion being the
dominant task. On the other hand, when approximate solutions are sought with ‖y−Ax̂‖2/‖y‖2� 10−4

the more sophisticated algorithms can be substantially faster due to the asymptotic convergence rate
more directly impacting the computational time.

2.3.1 Accelerated iterative hard thresholding algorithms. Hard Thresholding Pursuit (HTP), Alg. 7
(originally presented as Iterative thresholding with inversion (ITI) [66]), and SVP-Newton [56] are the
simplest accelerated hard thresholding algorithms for (1.1)–(1.3). HTP corresponds to NIHT with an
added pseudo-inverse (Step 4) to compute the optimal values of the k nonzeros given the current esti-
mate of the support set Tl . Typically the pseudo-inverse is computed using the conjugate gradient (CG)
method for the system ProjTl

(
A∗AProjTl

(x)
)
= ProjTl

(A∗y). Similarly, SVP-Newton corresponds to
NIHT for matrix completion with an added step after the principal subspace Ul is identified, where
the next estimate is given by Xl = argminZ ‖y−A

(
ProjUl

(Z)
)
‖2. An important aspect of the com-

putational effectiveness of HTP and SVP-Newton is to determine how many iterations of CG should
be implemented per iteration of HTP and SVP-Newton to approximately solve the least squares sub-
problem. CGIHT restarted and CGIHT projected for compressed sensing can be viewed as the internal
CG for the least squares sub-problem in HTP terminating upon either the support set changing or the
relative fraction

∥∥∥rl−1−ProjTl−1
(pl−1)

∥∥∥/‖ProjTl−1
(rl−1)‖ being sufficiently large. CGIHT projected for

matrix completion can be viewed as the internal CG for the least squares sub-problem in SVP-Newton
terminating for sufficiently large relative fractions

∥∥∥Rl−1−ProjUl−1
(Pl−1)

∥∥∥/‖ProjUl−1
(Rl−1)‖. These

restarting conditions control the computational effort of solving the least squares sub-problem of HTP
or SVD-Newton for a current estimate of the support set or subspace before moving to a new support
set or subspace. Properly controlling the computational cost of solving the sub-problem is essential to
obtain an overall faster recovery time than NIHT [12]. Moreover, excessively solving the sub-problem
of minimizing the objective in (1.1)–(1.3) while restricted to a fixed (row) support set or subspace
can result in difficulty moving to a different support set or subspace; this can ultimately cause these
algorithms to fail to recover sparse vectors of cardinality k which can be recovered by CGIHT for com-
pressed sensing. Likewise, these algorithms can fail to recover low rank matrices of rank r which can
be recovered by CGIHT for matrix completion. In addition to the provable recovery guarantees of the
restarted and projected variants of CGIHT in Thm. 2.2–2.5, the main innovation of CGIHT is the nearly
uniformly superior empirical performance of CGIHT as compared to NIHT and HTP both in terms of
values of (k,m,n) and (r,m,n, p) recoverable as well as the runtime needed to recover the solution.

As previously mentioned, there are numerous other accelerated hard thresholding algorithms for

12 of 40 JEFFREY D. BLANCHARD, JARED TANNER, AND KE WEI

Algorithm 7 HTP (Hard Thresholding Pursuit [45])
Initialization: Set w−1 = A∗y, T0 = PrincipalSupportk(|w−1|), x0 = ProjT0

(w−1), and l = 1.
Iteration: During iteration l, do

1: rl−1 = A∗(y−Axl−1) (update the residual)

2: ωl =
‖ProjTl−1

(rl−1)‖2

‖AProjTl−1
(rl−1)‖2

(optimal stepsize in the k-subspace Tl−1)

3: xl = xl−1 +ωlrl−1 (steepest descent step)
4: Tl = PrincipalSupportk(xl) (proxy to the support set)
5: xl = ProjTl

(A†y) (projection onto the k-subspace Tl)

the solution of (1.1)–(1.3). In [14], Blumensath introduced the Accelerated Iterative Hard Thresholding
(AIHT) framework for establishing recovery guarantees for algorithms which utilize a method for reduc-
ing the residual norm of an approximation when compared to the NIHT approximation. In that work,
an algorithm is considered an Accelerated IHT algorithm if at each iteration the output xl is a k-sparse
vector satisfying ‖y−Axl‖2 6 ‖y−Ax̄l‖2 where x̄l is obtained from NIHT. In the AIHT framework,
one might consider using a subspace restricted conjugate gradient method to obtain the minimum norm
solution; this is precisely the method used in HTP, and could be extended for (1.3) to SVP-Newton. The
AIHT framework is designed based on the further reduction of the norm of the residual ‖y−Axl‖. The
CGIHT family of algorithms does not fit within this framework. Rather than performing iterations of
CG on a subspace in order reduce the residual, as is done in HTP and SVP-Newton, CGIHT is designed
to always perform CG on a subspace except when a measure of subspace confidence is violated. It is
this perspective that subspace confidence dictates the restarting decisions which separates CGIHT from
the AIHT framework including HTP and SVP-Newton. Moreover, in iterations where the true subspace
has not been identified, there is, a priori, no obvious guarantee a CGIHT step will reduce the residual
norm. The stepsize used in CGIHT is only the optimal stepsize to reduce the residual if the current
subspace (Tl or Ul) contains the true supporting subspace of the optimal solution to the linear system of
equations1. Consequently, the CGIHT family of algorithms requires a direct proof of contraction2 as in
Thm. 2.2–2.5.

We briefly discuss some additional notable examples of hard thresholding algorithms, though in less
detail due to their being less closely related to CGIHT than are NIHT and HTP (SVP-Newton). For
compressed sensing, (1.1) and (1.2), examples of other hard thresholding algorithms include Compres-
sive Sampling Matching Pursuit (CoSaMP) [69], Subspace Pursuit [28] (SP), and the Algebraic Pursuit
(ALPS) family of algorithms [25]. These, and other related algorithms, differ from NIHT and HTP
by having intermediate steps that further update the values on support sets of cardinality greater than
k. Analogous algorithms also exist for matrix completion, (1.3), including the Matrix ALPS family of
algorithms [59] and Atomic Decomposition for Minimum Rank Approximation (ADMiRA) [60] which
is an extension of CoSaMP to (1.3). There are numerous other hard thresholding algorithms, particu-
larly for matrix completion where the continuous manifold of low rank matrices gives scope for greater
diversity of algorithm constructions, see for example [29, 53, 57, 67]. For each of these algorithms
there are qualitatively similar recovery guarantees provided the measurement operator has sufficiently
small RICs. Of greater practical importance is the region of the problem sizes recoverable for each of

1The stepsizes used in NIHT and HTP are also only optimal in terms of residual norm reduction when the current subspace
contains the true subspace.

2Once the contraction is established, the reduction in residual required by the AIHT framework is simultaneously established.

CONJUGATE GRADIENT ITERATIVE HARD THRESHOLDING 13 of 40

(1.1)–(1.3) and the relative computational time required for each algorithm. An exhaustive comparison
of algorithms in the literature is beyond the scope of this manuscript. Instead we focus our empirical
comparisons in Sec. 3 on variants of two representative algorithms which have advantageous properties:
CSMPSP (a variant of CoSaMP and SP, see [12]) for (1.1)–(1.2) and FIHT (a variant of 1-ALPS(2))
for (1.1)–(1.3). FIHT, Alg. 8, is a variant of 1-ALPS(2) which is the version of ALPS observed to have
the greatest overall computational efficacy. FIHT differs from 1-ALPS(2) in its fourth step, where 1-
ALPS(2) uses a support set of size of at least 2k by including k indices from the residual in its third step.
Empirical testing [83] showed FIHT to be uniformly superior to 1-ALPS(2) for (1.1) and (1.3) in terms
of both the problem sizes recoverable and the runtime needed to recover the solution. Central to the fast
asymptotic convergence rate of FIHT is the optimal selection of τ listed in the first step of FIHT. For τ

fixed, the traditional 1-ALPS(2) has been proven to have RIC recovery guarantees analogous to other
hard thresholding algorithms; however, no such proof is currently available when the variable τ from
the first step of Alg. 8 is used. In this sense, FIHT can be most directly compared with the variants of
CGIHT that do not have restarting and similarly lack a RIC analysis of uniform recovery.

Algorithm 8 FIHT: a variant of 1-ALPS(2) [25]
Initialization: Set x−1 = 0, w−1 = A∗y, T0 = PrincipalSupportk(|w−1|),
x0 = ProjT0

(w−1), and l = 1.
Iteration: During iteration l, do

1: if l = 1,
τl−1 = 0 (set momentum stepsize)

else
τl−1 =

〈y−Axl−1,A(xl−1−xl−2)〉
‖A(xl−1−xl−2)‖2

(calculate momentum stepsize)
2: wl−1 = xl−1 + τl−1(xl−1− xl−2) (new extrapolated point)
3: rw

l−1 = A∗(y−Awl−1) (residual of extrapolated point)
4: T w

l−1 = PrincipalSupportk(wl−1) (support set of extrapolated point)

5: α̃l =
‖ProjT w

l−1
(rw

l−1)‖
2

‖AProjT w
l−1

(rw
l−1)‖2

(optimal stepsize restricted to support of wl−1)

6: xl = wl−1 + α̃lrw
l−1 (steepest descent step)

7: Tl = PrincipalSupportk(xl) (proxy to the support set)
8: xl = Threshold(xl ,Tl) (restriction to proxy support set Tl)
9: rl = A∗(y−Axl) (residual of xl)

10: αl =
‖ProjTl

(rl)‖2

‖AProjTl
(rl)
‖2 (optimal stepsize restricted to Tl)

11: xl = xl +αlProjTl
(rl) (one more gradient descent in the restricted search direction)

Sec. 3.1 shows CGIHT and FIHT are typically the most efficient methods for the solution of (1.1)
in terms of (k,m,n) recoverable and the computational time needed. FIHT (and the ALPS family of
methods) are based on the optimal first order method for convex problems [70] which is known to lose
its accelerated convergence rate in the presence of noise [30]; for detailed comparisons in the presence
of noise see [13]. Sec. 3.2 shows CGIHT to be the most efficient algorithm for the solution of (1.2),
with notably higher recovery regions than CSMPSP, NIHT and FIHT. Sec. 3.3 shows CGIHT has a
recovery region comparable to that of NIHT, but with a notably faster asymptotic convergence rate,
similar to FIHT though with a modestly higher phase transition and greater robustness to noise [83]. In
totality the empirical results presented in Sec. 3 show CGIHT to generally be the preferred algorithm

14 of 40 JEFFREY D. BLANCHARD, JARED TANNER, AND KE WEI

for compressed sensing and matrix completion, (1.1)–(1.3).

2.3.2 Beyond iterative hard thresholding algorithms for (1.1)–(1.3). There are equally many algo-
rithms for the solution of (1.1)–(1.3) which are not iterative hard thresholding algorithms. Though an
exhaustive review is beyond the scope of this manuscript, we briefly review the most notable example.
The most widely studied alternative to directly solving (1.1)–(1.3) is replacement of the non-convex
constraint with a convex relaxation. That is, the (row) sparsity and rank constraints are replaced by the
`1 and Schatten-1 norms respectively and the objective is reformulated as a variant of

min
z∈Rn
‖y−Az‖2 +λ‖z‖1, (2.10)

min
Z∈Rn×r

‖Y −AZ‖2 +λ‖Z‖1,2, (2.11)

or
min

Z∈Rm×n
‖y−A (Z)‖2 +λ‖Z‖∗ (2.12)

where ‖Z‖1,2 is the sum of the `2 norm of the rows of Z and ‖Z‖∗ is the sum of the singular values
of Z. Under suitable conditions on the sensing operator, A or A , it has been proven that the solu-
tion to these convex relaxations is exactly the solution to the associated nonconvex question (1.1)–
(1.3); see for example [1, 19, 27, 31, 34, 42, 56, 74–76, 80, 85] and references therein. The for-
mulations (2.10)–(2.12) are standard convex optimization questions and can be solved using any of
a myriad of algorithms and software packages. In addition, there are many algorithms for (2.10)–(2.12)
specifically designed for efficient identification of sparse or low rank solutions; see for example [3–
6, 18, 44, 50, 65, 71, 79, 82, 84, 86]. Of these sparsity tailored convex relaxation algorithms, the one
most related to CGIHT is CGIST [50] where CG is applied to soft thresholding with restarting condi-
tions based upon the sign pattern of past iterates; a fixed sign pattern corresponds to a fixed face of the
projected polytope. Though the literature contains several empirical comparisons of the aforementioned
algorithms, a detailed average runtime comparison between iterative hard thresholding algorithms and
convex relaxation algorithms is particularly challenging due to various implementation heuristics, such
as warm starting [44], commonly used in algorithms for the convex relaxations. Moreover, solving
(2.10)–(2.12) with a fixed relaxation parameter λ correctly identifies the subspace but results in deflated
nonzero values in (2.10)–(2.11) and deflated singular values in (2.12). As a consequence, the solution to
(2.10)–(2.12) is typically debiased on the fixed solution subspace to obtain the solution to (1.1)–(1.3).
An intra-class comparison should include these practical acceleration techniques for both classes of
methods as well as debiasing where needed. Though such an intra-class comparison would be highly
informative, this manuscript focuses on directly contrasting the CGIHT family of algorithms within
the single class of iterative hard thresholding algorithms. Comparisons between the precurser IHT and
non-IHT based algorithms are available in [37].

3. Empirical Performance Comparisons

The RIC based recovery guarantees for the solution of (1.1)-(1.3), such as Thm. 2.2–2.5 for CGIHT, are
uniform over all measured k (row) sparse or rank r matrices. The uniform nature of these results gives
sufficient conditions for recovery, but these conditions are typically highly pessimistic when compared
with the ability of an algorithm to solve (1.1)–(1.3) for (row) sparse or low rank matrices selected
independently from the linear measurement operator. This observed average case performance is often

CONJUGATE GRADIENT ITERATIVE HARD THRESHOLDING 15 of 40

far more useful to practitioners since the theoretical guarantees require many more measurements than
would typically be useful in applications.

All three problems (1.1)–(1.3) are underdetermined linear systems of equations as the number of
linear observations is less than the ambient dimension of the object being measured. If a full set of
measurements is obtained, the sensing process is invertible and the exact solution is easily identified. On
the other hand, the underlying object lies in a subspace defined by relatively few degrees of freedom. For
compressed sensing, the k-sparse signals have exactly k degrees of freedom while in matrix completion
the set of rank r matrices lie on a manifold defined by r(m+n− r) degrees of freedom. If the subspace
containing the measured object is known a priori, the object can be recovered by making appropriate
measurements in the known subspace with the number of measurements equal to the number of degrees
of freedom. Therefore, these problems inherently define an undersampling ratio and an oversampling
ratio

δ =
number of observations

ambient dimension
and ρ =

degrees of freedom
number of observations

, (3.1)

with the unit square (δ ,ρ) ∈ [0,1]2 a phase space defining where the number of measurements is suffi-
cient for recovery of (1.1)–(1.3) to be possible, and yet fewer measurements are taken than the ambient
dimension.

In this section, we present empirical observations of CGIHT’s efficacy as compared with several
leading hard thresholding algorithms. First, we present recovery phase transition curves for each algo-
rithm which separate the phase space into two regions: success and failure. For problem instances with
(δ ,ρ) below the recovery phase transition curve, the algorithm is observed to return an approximation
matching the solution of (1.1)–(1.3). Alternatively, for problem instances with (δ ,ρ) above the recovery
phase transition curve, the algorithm is observed to return an approximation that does not appear to be
converging to a solution of (1.1)–(1.3). For each algorithm, the region of the phase space below the
recovery phase transition curve is referred to as the recovery region. Recovery phase transition curves
for several algorithms are presented for the compressed sensing problem, the row-sparse approximation
problem, and the low rank matrix completion problem in Secs. 3.1, 3.2, and 3.3, respectively.

For a problem instance with sampling ratios (δ ,ρ) in the intersection of the recovery region for
multiple algorithms, a practitioner must select an algorithm based on some criteria other than ability to
obtain the solution of (1.1)-(1.3). In [12], the authors introduced algorithm selection maps of the phase
space which identify the algorithm from NIHT, HTP, or CSMPSP with the least computational recovery
time. In Sec. 3.1.3 we present minimum recovery time algorithm selection maps which also consider
CGIHT and FIHT.

3.1 Empirical Performance Comparisons for Compressed Sensing

3.1.1 Experimental Set-up. The empirical performance comparison of the hard thresholding algo-
rithms for compressed sensing is conducted with the software3 GAGA: GPU Accelerated Greedy Algo-
rithms for Compressed Sensing, Version 1.1.0 [10, 11]. This section compares the performance of
CGIHT, CGIHT restarted, CGIHT projected, FIHT, NIHT, HTP, and CSMPSP. CGIHT projected is
implemented with the restarting parameter θ = 6 for problem instances with δ 6 0.5 and θ = 3 for
δ > 0.5. These values of θ were selected due to their favorable performance in preliminary tests, but
have not been extensively tuned. Moreover, the values of θ have not been selected based on the RIC

3This software package includes a folder with a Matlab script do all.m which automatically generates the necessary dataset
(though with different random seeds) and processes the data to produce all figures contained in Sec. 3.1.

16 of 40 JEFFREY D. BLANCHARD, JARED TANNER, AND KE WEI

conditions of Thm. 2.2 where a computationally inefficient θ � 1 would be suggested for uniform
recovery guarantees. The testing was conducted on a Linux machine with Intel Xeon E5-2643 CPUs
@ 3.30 GHz, NVIDIA Tesla K10 GPUs, and executed from Matlab R2013a. The algorithms are tested
with three random matrix ensembles:

• N : dense Gaussian matrices with entries drawn i.i.d. from N (0,m−1);

• S7: sparse matrices with 7 nonzero entries per column drawn with equal probability from
{−1/

√
7,1/
√

7} and locations in each column chosen uniformly;

• DCT : m rows chosen uniformly from the n×n Discrete Cosine Transform matrix.

These three random matrix ensembles are representative of the random matrices frequently encoun-
tered in compressed sensing: N represents dense matrices, S7 represents sparse matrices, and DCT
represents subsampling structured matrices with fast matrix-vector products.

The measured vectors x are taken from the random binary vector ensemble, B, which are formed by
uniformly selecting k locations for nonzero entries with values {−1,1} chosen with equal probability.
A problem class (Mat,B) consists of a matrix ensemble, Mat ∈ {N ,S7,DCT}, and a sparse vector
drawn from the binary vector distribution, B. Alternative sparse vector ensembles, such as having
nonzero entries drawn from a uniform or normal distribution, have been shown to have larger regions
of the (δ ,ρ) phase space in which hard thresholding algorithms succeed in finding the solution to the
compressed sensing problem (1.1); related phase transitions and additional performance characteristics
for alternate vector ensembles are available in [12]. For conciseness we restrict our focus to sparse
vectors from B and with measurements y given by Ax; empirical observations of CGIHT in the presence
of noise are considered in [13].

When the measured vector is taken from the vector ensemble B, the `∞ norm accurately determines
when the support set of the approximation returned by a hard thresholding algorithm coincides with
the support set of the measured vector. Additionally, when the `∞ norm is small, the algorithms have
accurately identified the values of the nonzero entries. Therefore, for the problem classes (Mat,B), we
say an algorithm has successfully recovered the measured vector if the output x̂ differs by no more than
10−3 in any single component, namely ‖x̂−x‖∞ 6 10−3 which implies that the correct support has been
identified and that

‖x̂− x‖2

‖x‖2
6 10−3. (3.2)

The results of the algorithm tests are presented in the recovery phase transition framework. For the
compressed sensing problem, the sparsity of the desired approximation defines the minimum number of
measurements required to capture the underlying information. If the support of the vector x is known a
priori, only k = ‖x‖0 measurements are necessary. Therefore, taking m measurements with k < m < n
defines the compressed sensing undersampling and oversampling ratios

δ =
m
n

and ρ =
k
m
. (3.3)

For testing the compressed sensing problem, the parameter δ ∈ (0,1) takes on thirty values

δ ∈ {0.001,0.002,0.004,0.006,0.008,0.01,0.02,0.04,0.06,0.08,0.1, . . . ,0.99} (3.4)

with 18 additional uniformly spaced values of δ between 0.1 and 0.99. The parameter ρ ∈ (0,1) is
sampled in two different ways, one to identify the recovery phase transition for each algorithm and the
second for direct performance comparison throughout the recovery regions.

CONJUGATE GRADIENT ITERATIVE HARD THRESHOLDING 17 of 40

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

← CGIHTrestarted
← FIHT

← NIHT ← HTP

CSMPSP→
← CGIHTprojected

← CGIHT

50% phase transition curve for (N,B), n = 212

δ=m/n

ρ
=

k
/m

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

← CGIHTrestarted
← FIHT

← NIHT ← HTP

CSMPSP→
← CGIHTprojected

← CGIHT

50% phase transition curve for (S
7
,B), n = 218

δ=m/n

ρ
=

k
/m

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

← CGIHTrestarted
← FIHT

← NIHT

← HTP

CSMPSP→ ← CGIHTprojected

← CGIHT

50% phase transition curve for (DCT,B), n = 220

δ=m/n

ρ
=

k
/m

(a) (b) (c)
FIG. 1. 50% recovery probability logistic regression curves for matrix ensembles (a) N with n = 212, (b) S7 with n = 218, and
(c) DCT with n = 220.

3.1.2 Recovery Phase Transition Curves. The empirical recovery phase transition curves are logistic
regression curves identifying the 50% success rate for the given algorithm and problem class. In order
to generate sufficient data for the logistic regression, the testing focuses on the phase transition region
where the algorithm transitions from always succeeding to always failing. For a given problem class
(Mat,B) and a specific value of n, the 30 values of m are chosen according to m = dδ ·ne with δ

taken from (3.4). The phase transition region is found via a binary search which determines an interval
[kmin,kmax] so that the algorithm successfully recovers each of 10 problem instances at k < kmin and
fails to recover any of 10 problem instances for k > kmax. The phase transition region [kmin,kmax] is
then extensively tested with 10 problem instances at max(50,

√
m) distinct, uniformly spaced values

of k ∈ (kmin,kmax). When kmax − kmin 6 50, every value of k ∈ [kmin,kmax] is tested 10 times. The
results presented in this subsection were obtained in precisely the same manner as those reported in [12]
where the interested reader will find further details regarding experimental set-up, stopping criteria, and
algorithm implementation.

In [12] it was observed that NIHT, HTP, and CSMPSP have similar recovery phase transition curves
for δ . 0.1 for matrix ensembles N and S7 while CSMPSP had an inferior phase transition in this
region for the DCT matrix ensemble. For larger values of δ , CSMPSP typically had the highest recovery
phase transition curve while NIHT and HTP continued to have similar phase transitions. In Fig. 1 we
observe that the recovery phase transition curves for CGIHT and CGIHT restarted are superior to the
phase transition curves of NIHT and HTP for essentially all δ ∈ (0,1). In particular, the phase transitions
curves for CGIHT and CGIHT restarted are closer to that of CSMPSP despite CSMPSP searching over
a larger support set in each iteration. Figure 1 also shows that the recovery phase transition for CGIHT
projected and FIHT are nearly identical to NIHT and HTP; again this is noteworthy in that FIHT searches
over a larger support set when the support set is changing.

3.1.3 Algorithm Selection Maps. The recovery phase transition curves of Sec. 3.1.2 define recovery
regions where the associated algorithm is typically able to successfully approximate the sparse vector
x. Algorithm selection is straightforward when faced with a problem instance in a region of the phase
space where only one algorithm is typically successful. However, algorithm selection requires additional
information in regions of the phase space where multiple algorithms are typically successful, i.e. in

18 of 40 JEFFREY D. BLANCHARD, JARED TANNER, AND KE WEI

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGIHTrestarted: plus
CGIHT: diamond
CGIHTprojected: hexagram
FIHT: times
NIHT: circle
HTP: asterisk
CSMPSP: square

δ=m/n

ρ
=

k
/m

Algorithm selection map for (N,B), n=212

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGIHTrestarted: plus
CGIHT: diamond
CGIHTprojected: hexagram
FIHT: times
NIHT: circle
HTP: asterisk
CSMPSP: square

δ=m/n

ρ
=

k
/m

Algorithm selection map for (S
7
,B), n=218

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CGIHTrestarted: plus
CGIHT: diamond
CGIHTprojected: hexagram
FIHT: times
NIHT: circle
HTP: asterisk
CSMPSP: square

δ=m/n

ρ
=

k
/m

Algorithm selection map for (DCT,B), n=220

(a) (b) (c)

FIG. 2. Algorithm selection maps for matrix ensembles (a) N with n = 212, (b) S7 with n = 218, and (c) DCT with n = 220.

the intersection of the recovery regions for different algorithms. In this section, we present algorithm
selection maps of the phase space based on least computational time for successful recovery. In order
to compare algorithms directly, the phase space is sampled on a mesh consisting of (δ ,ρ) with δ from
(3.4) and ρ taking the values

ρ ∈ {ρ j = 0.02 j | j = 1,2, . . . , j?} (3.5)

where ρ j? is the first value of ρ for which an algorithm fails to recover each of 10 problem instances
tested. For the problem instances tested on this mesh, the algorithm with the least computational recov-
ery time is identified on the algorithm selection map in Fig. 2. Algorithm selection maps show consistent
general trends across various problem sizes for each problem class (Mat,B) [12]; it is the general trends
that are important in the selection maps rather than individual points.

For the problem class (N ,B), when ρ . 0.2, the algorithm selection map in Fig. 2(a) recommends
the use of FIHT while for ρ & 0.2 CGIHT reliably recovers the sparse vector in the least time. The
algorithm selection map in Fig. 2(b) depicts three clear regions of the phase space for the problem
class (S7,B). When undersampling by a factor of ten or more so that δ < 0.1, CGIHT projected will
return the solution to (1.1) in the least time. For 0.1 . δ . 0.2, or for δ & 0.2 with ρ . 0.1, FIHT
will recover the measured vector in the least time. In all other cases, namely δ & 0.2 and ρ & 0.1,
CGIHT is recommended. For the problem class (DCT,B), FIHT is recommended through the majority
of the recovery region. In the region of the phase space from 0.2 . δ . 0.6, CGIHT restarted or
CGIHT are recommended as ρ approaches the phase transition curve of CGIHT. Note that when the
measurements are corrupted by additive noise, namely y = Ax+ e, FIHT is completely absent from the
algorithm selection maps due to the reintroduction of the noise in each iteration at the computation of
the extrapolated point (Alg. 8, Steps 1-2); for details see [13].

While the algorithm selection maps identify the algorithm with the least average computation time
to recover the vector, Fig. 3 provides a more complete picture for algorithm selection showing the ratio
of a given algorithm’s recovery time to the least recovery time of the algorithms tested. In particular,
Fig. 3 shows that at each point in the (δ ,ρ) phase space where recovery is possible, there is a variant
of CGIHT that is either the fastest or within a few percent of being the fastest. For example, while the
algorithm selection map advocates FIHT for problem class (N ,B) and ρ < 0.2, Fig. 3 (a),(d), and (g)
show that CGIHT, CGIHT restarted, and CGIHT projected rarely require more than 1.25 times as long
to find the solution, and never require more than 1.6 times as long as the least computation time among
all algorithms. Moreover, for the problem class (DCT,B), while the algorithm selection map Fig. 2(c)
seems to advocate for FIHT throughout the majority of the phase space, the ratio maps Fig. 3 (c),(f) and

CONJUGATE GRADIENT ITERATIVE HARD THRESHOLDING 19 of 40

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ=m/n

Time ratio: CGIHT / fastest algorithm for (N,B), n=212

ρ
=

k
/m

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ=m/n

Time ratio: CGIHT / fastest algorithm for (S
7
,B), n=218

ρ
=

k
/m

1

2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ=m/n

Time ratio: CGIHT / fastest algorithm for (DCT,B), n=220

ρ
=

k
/m

1

1.5

2

2.5

3

3.5

4

(a) (b) (c)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ=m/n

Time ratio: CGIHTrestarted / fastest algorithm for (N,B), n=212

ρ
=

k
/m

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ=m/n

Time ratio: CGIHTrestarted / fastest algorithm for (S
7
,B), n=218

ρ
=

k
/m

1

2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ=m/n

Time ratio: CGIHTrestarted / fastest algorithm for (DCT,B), n=220

ρ
=

k
/m

1

1.5

2

2.5

3

3.5

4

(d) (e) (f)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ=m/n

Time ratio: CGIHTprojected / fastest algorithm for (N,B), n=212

ρ
=

k
/m

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ=m/n

Time ratio: CGIHTprojected / fastest algorithm for (S
7
,B), n=218

ρ
=

k
/m

1

2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ=m/n

Time ratio: CGIHTprojected / fastest algorithm for (DCT,B), n=220

ρ
=

k
/m

1

1.5

2

2.5

3

3.5

4

(g) (h) (i)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ=m/n

Time ratio: FIHT / fastest algorithm for (N,B), n=212

ρ
=

k
/m

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ=m/n

Time ratio: FIHT / fastest algorithm for (S
7
,B), n=218

ρ
=

k
/m

1

2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ=m/n

Time ratio: FIHT / fastest algorithm for (DCT,B), n=220

ρ
=

k
/m

1

1.5

2

2.5

3

3.5

4

(j) (k) (l)
FIG. 3. Average recovery time ratio for CGIHT (a-c), CGIHT restarted (d-f), CGIHT projected (g-i), and FIHT (j-l) compared to
the fastest recovery time among all algorithms. Matrix Ensembles: N with n = 212 (left panels), S7 with n = 218 (center panels),
DCT with n = 220 (right panels).

20 of 40 JEFFREY D. BLANCHARD, JARED TANNER, AND KE WEI

(j) show that for δ < 0.7, CGIHT, CGIHT restarted, and FIHT have essentially the same recovery time.
Lastly, the CGIHT variants and FIHT show greater differences in relative recover time for the problem
class (S7,B), though with a variant of CGIHT nearly always having a smaller recovery time than FIHT.
In totality, for the most interesting region of the phase space in compressed sensing, namely δ < 1/2,
the average recovery time for CGIHT, CGIHT restarted, CGIHT projected, and FIHT are often within a
few percent of one another for each problem class considered.

0.05 0.1 0.15 0.2

10
1

10
2

ρ=k/m

T
im

e
(m

s
)

Average recovery time (ms) for (N,B): m = 1178, n = 4096

CGIHTrestarted
CGIHT
CGIHTprojected
FIHT
NIHT
HTP
CSMPSP

0.05 0.1 0.15 0.2 0.25

10
2

10
3

ρ=k/m

T
im

e
(m

s
)

Average recovery time (ms) for (S
7
,B): m = 75332, n = 262144

CGIHTrestarted
CGIHT
CGIHTprojected
FIHT
NIHT
HTP
CSMPSP

0.05 0.1 0.15 0.2 0.25

10
2

10
3

ρ=k/m

T
im

e
(m

s
)

Average recovery time (ms) for (DCT,B): m = 301328, n = 1048576

CGIHTrestarted
CGIHT
CGIHTprojected
FIHT
NIHT
HTP
CSMPSP

(a) (b) (c)
FIG. 4. Average recovery time (ms) dependence on ρ for δ ≈ 0.287; (a) N with n = 212, (b) S7 with n = 218, (c) DCT with
n = 220. Vertical scale in log(ms).

3.1.4 Recovery time dependence on ρ for δ ≈ 0.3. To further investigate the relative computational
cost of the algorithms, we provide detailed information for each problem class with a single (m,n) pair.
For fixed values of m, n, with a specific undersampling ratio of δ ≈ 0.287 (the columns in Fig. 2–3
closest to δ = 0.3), a semi-log plot of the average recovery time is displayed against ρ = k/m up to
the maximum phase transition of the algorithms tested at the selected δ . For each problem class and
each value of ρ j = .02 · j with j6 15, 100 problem instances were tested with the average time required
for recovery presented. Figure 4 shows two consistent trends across all three problem classes. First,
the three variants of CGIHT and FIHT provide significantly improved recovery time when compared to
NIHT, HTP, and CSMPSP. Second, among these four accelerated hard thresholding algorithms, CGIHT
demonstrates a clear computational advantage as ρ increases toward the recovery phase transition.

RECOMMENDATION Taken together, the algorithm selection maps, average time ratio maps, and aver-
age recovery time plot in Figs. 2–4 show that CGIHT, CGIHT restarted, CGIHT projected, and FIHT
share a competitive recovery performance which is superior to the other algorithms tested. Due to
its consistent performance across problem classes, its computational advantage in the most important
region of the phase space with δ < 1/2 and ρ near the phase transition curve, and its observed stability
to noise presented in [13], we recommend CGIHT for compressed sensing (Alg. 1) when solving the
compressed sensing problem (1.1) with a hard thresholding algorithm.

3.2 Empirical Performance Comparison for Row-Sparse Matrices

3.2.1 Experimental Set-up. A similar set of empirical results are presented here for the row-sparse
approximation problem (1.2). The problem classes are simple extensions of the those from Sec. 3.1. In

CONJUGATE GRADIENT ITERATIVE HARD THRESHOLDING 21 of 40

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

← CGIHTrestarted r = 1

← CGIHTrestarted r = 10

← CGIHT r = 1

← CGIHT r = 10

← CGIHTprojected r = 1

← CGIHTprojected r = 10

FIHT r = 1 →

FIHT r = 10 →

← NIHT r = 1

← NIHT r = 10

CSMPSP r = 1 →

CSMPSP r = 10 →

50% phase transition curve for (N,B), n=2048

δ=m/n

ρ
=

k
/m

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

← CGIHTrestarted r = 1

← CGIHTrestarted r = 10

← CGIHT r = 1

← CGIHT r = 10

← CGIHTprojected r = 1

← CGIHTprojected r = 10

FIHT r = 1 →

FIHT r = 10 →

← NIHT r = 1

← NIHT r = 10

CSMPSP r = 1 →

CSMPSP r = 10 →

50% phase transition curve for (S
7
,B), n=2048

δ=m/n

ρ
=

k
/m

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

← CGIHTrestarted r = 1

CGIHTrestarted r = 10 →

← CGIHT r = 1

← CGIHT r = 10

← CGIHTprojected r = 1

← CGIHTprojected r = 10

← FIHT r = 1

← FIHT r = 10

← NIHT r = 1

← NIHT r = 10

CSMPSP r = 1 →

← CSMPSP r = 10

50% phase transition curve for (DCT,B), n=2048

δ=m/n

ρ
=

k
/m

(a) (b) (c)
FIG. 5. 50% recovery probability logistic regression curves with n = 211 and r = 1,10 for matrix ensembles (a) N , (b) S7, and
(c) DCT .

this section, a problem class (Mat,B) consists of measurement matrix ensemble Mat ∈ {N ,S7,DCT}
and a matrix drawn from the binary row-sparse matrix ensemble; to form an element of the binary row-
sparse matrix ensemble, the row support is selected uniformly at random from the integers {1, . . . ,n}
and the entries in these rows are populated with values drawn with equality probability from {−1,1}.
The tests were conducted in Matlab R2013a (with inherent multithreading) on a Linux machine with
two Intel Xeon E5620 CPUs @2.40GHZ.

For clarity, we compare the three variants of CGIHT for compressed sensing against FIHT, NIHT,
and CSMPSP. In [9], it is shown that HTP and NIHT have nearly identical behavior in the row-sparse
setting. The algorithms are extended to the row-sparse approximation setting similar to other hard
thresholding algorithms [9, 46, 81]. The algorithms were implemented by extending the Matlab (non-
GPU) version of GAGA [10]. CGIHT projected is implemented with the restarting parameter θ = 3
for problem instances with δ 6 0.5 and θ = 10 for δ > 0.5; again, these values of θ were selected
based on preliminary tests and have not been tuned. For the row-sparse approximation problem, the
undersampling and oversampling ratios are again defined by δ = m/n and ρ = k/m, respectively, since
the degrees of freedom, number of measurements, and ambient dimension are all scaled by r. In this
section, we consider a row-sparse matrix to be successfully recovered when the algorithm returns an
approximation X̂ which satisfies

‖X̂−X‖F

‖X‖F
< 10−3. (3.6)

3.2.2 Recovery phase transition curves. The recovery phase transitions are again defined by the
logistic regression curve for the 50% successful recovery rate. Recovery phase transition curves for
both a single column (r = 1) and ten columns (r = 10) appear in Fig. 5. Due to the larger computational
burden and the current lack of a parallelized GPU implementation of these algorithms, the algorithms
were tested for n = 2048 with only fifteen values of δ which are spaced in [0,1] in a similar fashion
to (3.4); in particular, five of the fifteen values of δ lie from 0.01 to 0.1 in order to properly identify
the phase transition in the extreme undersampling scenario. The results presented in this section were
obtained in the same manner as those reported in [9] where the interested reader will find additional
information regarding stopping criteria and experimental set-up.

The significant increase in the area of each algorithm’s recovery regions for r = 10 compared to

22 of 40 JEFFREY D. BLANCHARD, JARED TANNER, AND KE WEI

r = 1 is consistent with other empirical testing; in particular the empirical recovery phase transition
curves for NIHT and CSMPSP reported here are consistent with those reported in [9]. The single
vector, r = 1, phase transition curves for the variants of CGIHT shown in Figs. 1 and 5 fall between
the phase transition curves of NIHT and CSMPSP. On the other hand, for row-sparse matrices with
ten independent columns the advantage of using CGIHT is greatly amplified. For row sparse matrices
from problem class (Mat,B) with ten columns, the recovery phase transition curves for both CGIHT
and CGIHT restarted are substantially higher than that of CSMPSP. Importantly, Fig. 5 shows that for
any reasonable undersampling ratio δ < 0.75, CGIHT and CGIHT restarted have substantially larger
recovery regions than CSMPSP which had the largest previously reported recovery region for row-
sparse approximation [9]. The recovery phase transition curves for CGIHT projected, FIHT, and NIHT
are similar across all three problem classes and are not competitive with CGIHT or CGIHT restarted
when r = 10. For r = 10 and for all three problem classes (Mat,B) with Mat ∈ {N ,S7,DCT}, CGIHT
restarted has the highest recovery phase transition curve and largest recovery region.

3.2.3 Recovery time dependence on ρ for δ ≈ 0.3. Similar to Sec. 3.1.4, this subsection investigates
the average recovery time of the algorithms for successful identification of the solution to (1.2). For a
single value of δ ≈ 0.287 with n = 2048 and m = dδ ·ne= 589, 100 problem instances were tested for
each value of k = bρ j ·mc for ρ j = {0.02 j : j = 1, . . . , j?} where every algorithm failed to recover any of
100 problem instances for k = bρ j? ·mc. Figure 6 shows that either CGIHT restarted or CGIHT projected
is able to recover the row-sparse matrices in the least time for 0.1 < ρ < ρ j? . In combination, Figs. 5–
6 show that CGIHT, CGIHT restarted, CGIHT projected, and FIHT offer a significant computational
advantage over other leading hard thresholding algorithms for row-sparse approximation. While the
phase transition curve of CGIHT projected closely tracks with that of NIHT, CGIHT projected offers a
substantial acceleration in recovery time for ρ well within the recovery region. For very small values of
ρ , CGIHT projected recovers the measured row-sparse matrix in the least time, similar to its behavior
in the single vector r = 1 setting. For all values of ρ in Fig. 6, CGIHT restarted has an average recovery
time that is less than CGIHT and for ρ approaching the phase transition the average recovery time of
CGIHT restarted is considerably better than the average recovery time of CGIHT projected and FIHT.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

10
2

10
3

10
4

ρ=k/m

T
im

e
(m

s
)

Average recovery time (ms) for (N,B): m = 589, n = 2048, r = 10

CGIHTrestarted
CGIHT
CGIHTprojected
FIHT
NIHT
CSMPSP

0.1 0.2 0.3 0.4 0.5 0.6 0.7

10
2

10
3

ρ=k/m

T
im

e
(m

s
)

Average recovery time (ms) for (S
7
,B): m = 589, n = 2048, r = 10

CGIHTrestarted
CGIHT
CGIHTprojected
FIHT
NIHT
CSMPSP

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10
2

10
3

ρ=k/m

T
im

e
(m

s
)

Average recovery time (ms) for (DCT,B): m = 589, n = 2048, r = 10

CGIHTrestarted
CGIHT
CGIHTprojected
FIHT
NIHT
CSMPSP

(a) (b) (c)
FIG. 6. Average recovery time (ms) dependence on ρ for δ ≈ 0.287 with n = 211 and r = 10; (a) N , (b) S7, (c) DCT . Vertical
scale in log(ms).

CONJUGATE GRADIENT ITERATIVE HARD THRESHOLDING 23 of 40

RECOMMENDATION The support set restarting criterion of CGIHT restarted for this discrete problem
shows a clear advantage in terms of both recovery phase transition curve and computational time for
recovery near the phase transition. Across all problem classes and for all values of ρ in Fig. 6, CGIHT
restarted is either superior to or competitive with CGIHT projected in terms of time for recovery; more-
over, CGIHT restarted is faster than CGIHT for the row-sparse problem with r = 10. Due to its superior
phase transition and lower computational time for identifying the solution, we recommend CGIHT
restarted for solving the row-sparse approximation problem (1.2) with a hard thresholding algorithm.

3.3 Empirical Performance Comparison for Matrix Completion

3.3.1 Experimental Set-up. In this section, we present empirical recovery phase transition curves and
investigate the rate of recovery for CGIHT and CGIHT projected for matrix completion. The testing was
conducted through a massive distribution of problem instances at the IRIDIS High Performance Com-
puting Facility provided by the e-Infrastructure South Centre for Innovation. Recall that the sensing
operator in matrix completion is a linear map A (·) : Rm×n → Rp where y = A (X) has each mea-
surement defined by the Frobenius inner product of a sensing matrix Ai ∈ Rm×n and the matrix X :
yi = 〈Ai,X〉F . The algorithms are tested with two representative sensing operator ensembles:

• G : each of the p sensing matrices is a dense Gaussian matrix with entries drawn i.i.d. from
N (0,(mn)−1);

• E : each of the p sensing matrices is an entry sensing matrix with a single nonzero value of 1 with
the location chosen uniformly at random without replacement.

The sensing operator ensemble G is representative of dense sensing while operators drawn from the
ensemble E are representative of entry sensing operators. In implementation, the operators drawn from
E are employed by directly acquiring p distinct entries in the sensed matrix rather than through a series
of inner products. For matrix completion, the problem class (Oper,N) is comprised of a sensing operator
ensemble Oper ∈ {G ,E } and the random low rank matrix ensemble N. To form a rank r matrix in the
ensemble N, we compute the product of two random rank r matrices via X = LR where L ∈ Rm×r and
R ∈ Rr×n with entries drawn i.i.d. from the normal distribution N (0,1). For a given set of parameters
(r,m,n, p), a problem instance is formed by drawing a sensing operator A and low rank matrix X from
the problem class (Oper,N).

In the matrix completion setting, the matrices X ∈ Rm×n with rank(X) 6 r form a manifold of
dimension r(m+ n− r) in Rmn. Therefore, taking p linear measurements with r(m+ n− r) 6 p 6 mn
defines matrix completion undersampling and oversampling ratios

δ =
p

mn
and ρ =

r(m+n− r)
p

. (3.7)

For conciseness, and consistent with a large portion of the literature, the empirical results presented in
this section focus on square matrices with m = n; rectangular matrices are observed to have lower phase
transitions; see for instance [1, 75, 77].

An empirical average-case performance analysis of NIHT for recovering a low rank matrix from
near the minimum number of measurements was first reported by the last two authors in [77]. In that
article, the authors compared NIHT with other state of the art methods demonstrating the superiority of
NIHT in terms of phase transition for both sensing ensembles G and E . Due to the already large compu-
tational time of more than 5.6 CPU years required to generate the matrix completion data presented here,

24 of 40 JEFFREY D. BLANCHARD, JARED TANNER, AND KE WEI

we restrict our testing to the matrix completion variants of CGIHT, CGIHT projected, NIHT and FIHT.
The matrix completion variant of FIHT is an adaptation of Matrix ALPS II [59]; FIHT is observed to be
superior to Matrix ALPS II in terms of both phase transition and computational complexity as the latter
requires an additional singular value decomposition in each iteration to include the extra rank r sub-
space for computing the stepsize [83]. Indirect comparisons can be drawn with other hard thresholding
algorithms by contrasting the results presented here and those in [59].

The algorithms were implemented in Matlab R2013a with executables generated using the Mat-
lab Compiler Ver. 4.18.1 and distributed across the cores at the IRIDIS HPC facility. Due to the
importance of the convergence rate in recovering low rank matrices with a hard thresholding algo-
rithm, the algorithms are terminated using stopping criteria derived from extensive testing and consis-
tent with the stopping criteria detailed in [12, 77]. In particular, an algorithm terminates if one of the
following conditions is satisfied: a maximum of 5000 iterations is met, the relative residual is small
‖y−A (Xl)‖2/‖y‖2 6 10−5, or the multiplicative convergence rate is close to 1,(

‖y−A (Xl+15)‖2

‖y−A (Xl)‖2

) 1
15
> 0.999. (3.8)

Preliminary testing suggested our choice of the restart parameter θ in CGIHT projected, which was set
to 5 for sensing ensemble G ; and for sensing ensemble E it was set to 3 if δ 6 0.5, otherwise it was set
to 10. In this section, an algorithm is considered to have successfully recovered the matrix X when the
algorithm returns a matrix X̂ that satisfies

‖X̂−X‖F

‖X‖F
6 2×10−3. (3.9)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ = p/mn

ρ
=

r(
m

+n
−r

)/p

Recovery phase transition for (G,N)

CGIHT
CGIHTprojected
FIHT
NIHT

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ = p/mn

ρ
=

r(
m

+n
−r

)/p

Recovery phase transition for (E,N)

CGIHT
CGIHTprojected
FIHT
NIHT

(a) (b)
FIG. 7. 50% recovery probability logistic regression curves for matrix completion algorithms: CGIHT, CGIHT projected, FIHT,
and NIHT. Horizontal axis δ and vertical axis ρ as defined in (3.7). (a) G with m = n = 80, (b) E with m = n = 800.

3.3.2 Recovery Phase Transition Curves. This section investigates when the matrix completion algo-
rithms can successfully recover a rank r matrix from p linear measurements with p proportional to
r(m+ n− r). For each problem class (Oper,N) and (m,n) pair, we conduct tests with the undersam-
pling ratio δ = p/(mn) taking 10 equispaced values from 0.1 to 1.0. The reconstruction algorithms are

CONJUGATE GRADIENT ITERATIVE HARD THRESHOLDING 25 of 40

substantially faster for sensing ensemble E , as dense sensing operators drawn from G require p matrix
inner products for the application of A (·), which scales proportionally to n4 in our testing environment.
For this reason the tests for problem class (G ,N) are conducted for the small problem size m = n = 80,
whereas for (E ,N) the tests are conducted for m = n = 800 which was observed in [77] to resolve the
phase transition well. For each triple (m,n, p), we start from a sufficiently small rank r that the algo-
rithm can successfully recover each sensed matrix in all 10 randomly drawn problem instances; we then
increase the rank until the algorithm fails to recover the sensed matrix in each of ten random problem
instances. Figure 7 displays the empirical phase transitions of the four tested algorithms, again defined
by the logistic regression curve for the 50% successful recovery rate.

For the most interesting region of the phase space, namely δ < 1/2, the recovery phase transition
curves of CGIHT and CGIHT projected are always greater than 0.8 indicating both algorithms are
able to successfully recover the randomly generated rank r matrices with the number of measurements
p =C · r(m+n− r) for C 6 1.25. For problem class (G ,N) with δ < 1/2, the recovery phase transition
curves for CGIHT and CGIHT projected are at least as high as the phase transition curve for FIHT, which
in turn is either equivalent or superior to that of NIHT. For all δ ∈ (0.1,1), none of the other algorithms
have a phase transition curve superior to the phase transition curve of CGIHT for matrix completion
(Alg. 4). Likewise for (E ,n), CGIHT for matrix completion has the highest recovery phase transition
curve for all values of δ ∈ (0.1,1), although the phase transition curves for all four algorithms are very
similar. For δ > 0.7, the observed decrease in the phase transition curve for CGIHT projected is an
artifact of the restarting parameter θ , and is likely caused by excessively solving the sub-problem, and
in so doing causing the subspace restricted conjugate gradient projections to converge to a non-optimal
local minimum; decreasing the restarting parameter θ to 1 for δ > 0.7 increases the phase transition
curve to be that of NIHT, but at the cost of increased recovery time.

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Convergence rate for (E,N): m = n = 2000, p = 400000

ρ = r(m+n−r)/p

R
a

te

CGIHT
CGIHTprojected
FIHT
NIHT

0 0.2 0.4 0.6 0.8 1
10

1

10
2

10
3

10
4

10
5

Time (s) for (E,N): m = n = 2000, p = 400000

ρ = r(m+n−r)/p

T
im

e
 (

s)

CGIHT
CGIHTprojected
FIHT
NIHT

(a) (b)
FIG. 8. Average convergence rate and average recovery time (s) of CGIHT, CGIHT projected, FIHT and NIHT for problem class
(E ,N) with m = n = 2000, p = 0.1×mn and r ranging from 1 to 96. Horizontal axis ρ defined in (3.7) and convergence rate of
left panel defined in (3.8). Vertical scale for (b) is log(s).

3.3.3 Recovery time dependence on ρ for δ = 1/10. In this section, we explore the average recovery
time and per iteration asymptotic convergence rate for CGIHT, CGIHT projected, FIHT, and NIHT for
matrix completion with a fixed value of δ = 1/10. These experiments are performed with m= n= 2000,
p = mn/10, and the rank r sampled from the set {r j = 3 j : j = 1,2, . . . , j?} where r j? is the smallest

26 of 40 JEFFREY D. BLANCHARD, JARED TANNER, AND KE WEI

rank for which an algorithm fails to recover a single rank r j? matrix in 100 random problem instances.
Due to the computational burden of such large-scale testing, the results in this section were exclusively
conducted for the problem class (E ,N). Figure 8(a) displays the average convergence rates computed
according to (3.8) for each algorithm’s successful recovery of a rank r matrix. Figure 8(b) provides a
semi-log plot of the average computation recovery time.

The empirical results provided in Fig. 8 establish a computational advantage for CGIHT and FIHT
when compared to NIHT and CGIHT projected which have indistinguishable convergence rates in
Fig. 8(a). For the smallest ranks with ρ . 0.5, the accelerated algorithms CGIHT and FIHT have
comparable average convergence rates and average recovery times. For 0.5 . ρ . 0.85, FIHT appears
to offer an advantage in terms of both convergence rate and recovery time although theoretical results
indicate that FIHT will lose this advantage in the presence of noise. As the rank increases and forces
ρ toward the recovery phase transition, CGIHT regains the computational advantage. The inferior rate
of recovery for NIHT is expected due to the acceleration of convergence that is the hallmark of the
other two algorithms. It should be noted that these hard thresholding algorithms require a computation-
ally expensive partial singular value decomposition in each iteration and algorithms which avoid this
burdensome task are likely to have improved average recovery times.

RECOMMENDATION The empirical results presented in this section show that CGIHT and FIHT for
matrix completion have similar phase transition curves and rates of recovery which are superior to
CGIHT projected and NIHT. We conjecture that the instability to noise observed for FIHT in compressed
sensing will carry over to the matrix completion setting as the computation of the momentum step
will still reintroduce the noise in each iteration. With its superior recovery phase transition curve for
both Gaussian and entry sensing and its advantageous recovery rate near the phase transition curve, we
recommend CGIHT for matrix completion (Alg. 4) for solving the low rank matrix completion problem
(1.3) with a hard thresholding algorithm.

4. Proof of main results

4.1 Proof of Theorem 2.2: CGIHT restarted for compressed sensing, Alg. 1

The proof of Thm. 2.2 is partitioned here into three steps: a technical lemma, bounds on the update
and orthogonalization stepsizes, and the analysis of the algorithm. The first two steps are presented
as Lemmas 4.1 and 4.2. In CGIHT, each new approximation could possibly depend on all previous
iterations. This will ultimately lead to a three term recurrence relation on the approximation error. The
following induction argument assumes that we have established a base case prior to calling the lemma
as in the proof of Thm. 2.2.

LEMMA 4.1 Suppose c0,η ,τ1,τ2 > 0 and let µ = 1
2

(
τ1 +

√
τ2

1 +4τ2

)
. Assume c1 6 µc0 +η and

define cl = τ1cl−1 + τ2cl−2 +η for l > 2. If τ1 + τ2 < 1, then µ < 1 and

cl 6 µ
lc0 +η

l−1

∑
i=0

µ
i. (4.1)

Proof. If τ1 + τ2 < 1, then µ < 1
2 (τ1 + τ2 +1) < 1. By assumption, (4.1) is valid for c1. Assume it is

CONJUGATE GRADIENT ITERATIVE HARD THRESHOLDING 27 of 40

also valid for c j with j 6 l−1. Then, since µ = τ1 +
τ2
µ

,

cl 6 τ1

(
µ

l−1c0 +η

l−2

∑
i=0

µ
i

)
+

τ2

µ
µ

(
µ

l−2c0 +η

l−3

∑
i=0

µ
i

)
+η 6 µ

lc0 +η

l−1

∑
i=0

µ
i.

�
Central to the performance of CGIHT is the calculation of stepsizes for the update and orthogonal-

ization of the support set restricted conjugate gradient method. The stepsizes αl are uniformly bounded
near one with the same RIC bounds as the NIHT stepsize. The relative orthogonality is measured by
βl . When the support set has changed, βl is defined to be zero, otherwise each βl is uniformly bounded
near zero. In the process of establishing these bounds on the stepsizes, we also bound the spectrum of a
projection operator which appears regularly in this type of analysis.

LEMMA 4.2 By the definition of RICs of the measurement matrix A, the stepsize is uniformly bounded
by

1
1+Uk

6 αl 6
1

1−Lk
(4.2)

and the orthogonalization coefficients are uniformly bounded by

|βl |6
(1+Uk)(Lk +Uk)

(1−Lk)2 . (4.3)

Furthermore, if Q,S⊂ {1, . . . ,n} are two index sets and ck = |Q∪S|, then for any z∥∥ProjQ ((I−αlA∗A)ProjS(z))
∥∥6 Uck +Lck

1−Lk
‖ProjS(z)‖ . (4.4)

Proof of Lemma 4.2. When Tl 6= Tl−1 the stepsize αl is the same as proposed by NIHT, and is bounded
directly as

1
1+Uk

6 αl =
‖ProjTl

(rl)‖2

‖AProjTl
(rl)‖2 6

1
1−Lk

by inverting the standard RIC bounds of A. If Tl = Tl−1, we utilize two important inequalities

‖AProjTl−1
(pl−1)‖6 ‖AProjTl−1

(rl−1)‖, (4.5)

‖ProjTl−1
(rl−1)‖6 ‖ProjTl−1

(pl−1)‖. (4.6)

The first inequality (4.5) follows from noting that AProjTl−1
(pl−1) is orthogonal to AProjTl−1

(pl−2) by
construction (orthogonalization after the application of A is referred to as conjugate orthogonal); conse-
quently, multiplying rl−1 = pl−1+βl−1 pl−2 by A and noting the orthogonality gives ‖AProjTl−1

(rl−1)‖2 =

‖AProjTl−1
(pl−1)‖2 + β 2

l−1‖AProjTl−1
(pl−2)‖2 > ‖AProjTl−1

(pl−1)‖2. The second inequality (4.6) fol-
lows from applying the Cauchy-Schwartz inequality to the conjugate gradient property [51, pg. 34] that
‖ProjTl−1

(rl−1)‖2 =
〈

ProjTl−1
(rl−1),ProjTl−1

(pl−1)
〉

.
To establish the lower bound, we utilize (4.5) to observe

1
αl

=
‖AProjTl−1

(pl−1)‖2

‖ProjTl−1
(rl−1)‖2 6

‖AProjTl−1
(rl−1)‖2

‖ProjTl−1
(rl−1)‖2 6 1+Uk. (4.7)

28 of 40 JEFFREY D. BLANCHARD, JARED TANNER, AND KE WEI

The upper bound follows from (4.6) since

αl =
‖ProjTl−1

(rl−1)‖2

‖AProjTl−1
(pl−1)‖2 6

‖ProjTl−1
(pl−1)‖2

‖AProjTl−1
(pl−1)‖2 6

1
1−Lk

. (4.8)

Thus from (4.7) and (4.8), when Tl = Tl−1, αl is also bounded by

1
1+Uk

6 αl 6
1

1−Lk
. (4.9)

For any index sets Q,S⊂ {1, . . . ,n}, let AQ∪S be the submatrix formed by the columns of A indexed
by the set Q∪S. Then for any l and any vector z, the |Q| nonzeros in the vector ProjQ ((I−αlA∗A)ProjS(z))

are a subset of the |Q∪S| nonzeros in the vector
(

I−αlA∗Q∪SAQ∪S

)
ProjS(z), so that

∥∥ProjQ ((I−αlA∗A)ProjS(z))
∥∥6 ∥∥I−αlA∗Q∪SAQ∪S

∥∥‖ProjS(z)‖6
Uck +Lck

1−Lk
‖ProjS(z)‖ (4.10)

where ck = |Q∪S|. The bound on the operator I−αlA∗Q∪SAQ∪S in terms of the RIC of A follows from
Def. 2.1 and (4.9) as in [9, Lem. 5].

The orthogonalization factor βl is equal to zero when Tl 6= Tl−1, and can be bounded when Tl = Tl−1
by the using alternative formula

βl =−
〈ProjTl

(rl),ProjTl
(A∗AProjTl

(pl−1))〉
‖AProjTl

(pl−1)‖2 (4.11)

and expressing ProjTl
(rl) in terms of prior search directions. When Tl = Tl−1

ProjTl
(rl) = ProjTl

(rl−1)−αl−1ProjTl
(A∗AProjTl

(pl−1))

= ProjTl
(pl−1)−βl−1ProjTl

(pl−2)−αl−1ProjTl
(A∗AProjTl

(pl−1))

= ProjTl

(
(I−αl−1A∗A)ProjTl

(pl−1)
)
−βl−1ProjTl

(pl−2). (4.12)

where the first equality follows by substituting xl = ProjTl
(xl−1 +αl−1 pl−1) into rl , the second equality

by substituting rl−1 = pl−1− βl−1 pl−2, and the final equality by rearrangement. Inserting (4.12) for
ProjTl

(rl) into (4.11) gives

|βl | =

∣∣∣〈ProjTl
(I−αl−1A∗AProjTl

(pl−1)),ProjTl
(A∗AProjTl

(pl−1))〉
∣∣∣

‖AProjTl
(pl−1)‖2

6
‖ProjTl

(I−αl−1A∗AProjTl
(pl−1))‖‖ProjTl

(A∗AProjTl
(pl−1))‖

‖AProjTl
(pl−1)‖2

6
Lk +Uk

1−Lk
‖ProjTl

(pl−1))‖
(1+Uk)‖ProjTl

(pl−1)‖
(1−Lk)‖ProjTl

(pl−1)‖2

=
1+Uk

1−Lk
· Lk +Uk

1−Lk
(4.13)

CONJUGATE GRADIENT ITERATIVE HARD THRESHOLDING 29 of 40

where the first equality follows by noting that AProjTl
pl−1 and AProjTl

pl−2 are orthogonal, the first
inequality follows from the Cauchy-Schwarz inequality, and the second inequality from (4.10) with
Q = S = Tl . �

With Lemmas 4.1 and 4.2, the proof of Thm. 2.2 is similar to the proofs of other hard thresholding
algorithms. Following Foucart’s general outline [47], the approximation error is bounded by observing
that the hard thresholding operator produces the best k-sparse approximation to the current update.
Lemma 4.2 offers a simple way to bound the approximation error. The proof is complicated by the
fact that the current search direction can depend on all previous search directions. This is handled by
establishing a recurrence relation and invoking Lem. 4.1.
Proof of Theorem 2.2. The proof begins following the proof of an analogous theorem for IHT [47].
Note that

‖xl−wl−1‖2 = ‖xl− x+ x−wl−1‖2 = ‖xl− x‖2 +‖x−wl−1‖2 +2〈xl− x,x−wl−1〉6 ‖x−wl−1‖2

(4.14)
where the inequality follows from xl being, by definition, the k-sparse vector nearest to wl−1. Canceling
‖x−wl−1‖2 in (4.14) and rearranging gives the inequality

‖xl− x‖2 6 2〈xl− x,wl−1− x〉= 2〈xl− x,ProjTl∪T (wl−1− x)〉,

where ProjTl∪T reflects the sparsity of xl− x. Applying the Cauchy-Schwarz inequality and canceling a
power of ‖xl− x‖ gives

‖xl− x‖6 2‖ProjTl∪T (wl−1− x)‖. (4.15)

In anticipation of substituting wl−1 = xl−1+αl−1 pl−1 into (4.15), we note that pl−1 can be expressed as

pl−1 = rl−1 +
l−2

∑
j=0

r j

(
Π

l−1
q= j+1βq

)
. (4.16)

Equation (4.15) can then be expressed purely in terms of x j for j 6 l by substituting wl−1 = xl−1 +
αl−1 pl−1 into (4.15) with pl−1 given by (4.16) and replacing all instances of r j with A∗A(x− x j)+A∗e,

‖xl− x‖ 6 2

∥∥∥∥∥ProjTl∪T

(
xl−1− x+αl−1rl−1 +αl−1

l−2

∑
j=0

r j

(
Π

l−1
q= j+1βq

))∥∥∥∥∥
6 2

∥∥∥ProjTl∪T ((I−αl−1A∗A)(xl−1− x))
∥∥∥+2|αl−1|

∥∥∥ProjTl∪T (A
∗e)
∥∥∥

+2|αl−1|
l−2

∑
j=0

(
Π

l−1
q= j+1βq

)(∥∥∥ProjTl∪T (A
∗A(x− x j))

∥∥∥+∥∥∥ProjTl∪T (A
∗e)
∥∥∥) (4.17)

We proceed by bounding each of the terms in the final inequality of (4.17). Let εα = 1
1−Lk

, εβ =

30 of 40 JEFFREY D. BLANCHARD, JARED TANNER, AND KE WEI

(1+Uk)(Uk+Lk)
(1−Lk)

2 , and ελ = U3k+L3k
1−Lk

denote the upper bounds established by Lem. 4.2. The we have∥∥∥ProjTl∪T ((I−αl−1A∗A)(xl−1− x))
∥∥∥6 ελ‖xl−1− x‖, (4.18)

|αl−1|
∥∥∥ProjTl∪T (A

∗e)
∥∥∥6 εα (1+U2k)

1/2 ‖e‖, (4.19)

|αl−1|
l−2

∑
j=0

(
Π

l−1
q= j+1βq

)∥∥∥ProjTl∪T (A
∗A(x− x j))

∥∥∥6 εα(1+U3k)
l−2

∑
j=0

ε
l− j−1
β

‖x− x j‖, (4.20)

|αl−1|
l−2

∑
j=0

(
Π

l−1
q= j+1βq

)∥∥∥ProjTl∪T (A
∗e)
∥∥∥6 εα(1+U2k)

1/2‖e‖
l−2

∑
j=0

ε
l− j−1
β

. (4.21)

Applying (4.18)–(4.21) to (4.17), gathering like terms, and reindexing the sums,

‖xl− x‖6 2ελ‖xl−1− x‖+2εα(1+U3k)
l−1

∑
j=1

ε
j

β
‖xl− j−1− x‖+2εα(1+U2k)

1/2‖e‖
l−1

∑
j=0

ε
j

β
. (4.22)

A simplified argument focused only the first iterate yields

‖x1− x‖6 2ελ‖x0− x‖+2εα(1+U2k)
1/2‖e‖. (4.23)

Seeking a bound on ‖xl − x‖ purely in terms of ‖x0− x‖, define c0 = ‖x0− x‖, c1 = 2ελ c0 +ξ‖e‖,
and recursively define

cl = 2ελ cl−1 +2εα(1+U3k)
l−1

∑
j=1

ε
j

β
cl− j−1 +2εα(1+U2k)

1/2‖e‖
l−1

∑
j=0

ε
j

β
for l > 2. (4.24)

Note that (4.23) shows that ‖x1− x‖ 6 c1 and (4.22) ensures ‖x j− x‖ 6 c j for j > 2. By computing
cl− εβ cl−1 and isolating cl , (4.24) can be rewritten as a three term recurrence relation

cl = (2ελ + εβ)cl−1 +2(εα(1+U3k)− ελ)εβ cl−2 +2εα(1+U2k)
1/2‖e‖. (4.25)

Now define

τ1 = 2ελ + εβ , τ2 = 2(εα(1+U3k)− ελ)εβ , and ξ = 2εα(1+U2k)
1/2,

so that cl = τ1cl−1 +τ2cl−2 +ξ‖e‖. Let µ = 1
2

(
τ1 +

√
τ2

1 +4τ2

)
and observe that since 2ελ < τ1 < µ ,

c1 6 µc0 +ξ‖e‖. If τ1 + τ2 < 1, then Lem. 4.1 implies µ < 1 and

‖xl− x‖6 cl 6 µ
lc0 +ξ‖e‖

l−1

∑
i=0

µ
i 6 µ

lc0 +
ξ

1−µ
‖e‖= µ

l‖x0− x‖+ ξ

1−µ
‖e‖. (4.26)

Finally, note that µ and ξ are equivalent to the definitions in (2.3) and the sufficient condition
τ1 + τ2 < 1 is satisfied when

(L3k +U3k)(5−2Lk +3Uk)

(1−Lk)2 < 1. (4.27)

�
A nearly identical proof with row-sparse matrices establishes an identical sufficient condition for

row-sparse recovery via CGIHT restarted.

CONJUGATE GRADIENT ITERATIVE HARD THRESHOLDING 31 of 40

4.2 Proof of Theorem 2.5: CGIHT projected for matrix completion, Alg. 5

By establishing the standard orthogonality relationships for the conjugate gradient method when restricted
to a fixed column space, the matrix completion analogue of the uniform bounds on the stepsize and
orthogonalization coefficient follows the same general proof as that of Lemma 4.2.

LEMMA 4.3 By the definition of RICs of the measurement operator A , the stepsize is uniformly
bounded by

1
1+Ur

6 αl 6
1

1−Lr
(4.28)

and the orthogonalization coefficients are uniformly bounded by

|βl |6
(1+Ur)(Lr +Ur)

(1−Lr)2 . (4.29)

Furthermore, if Q,S define column spaces with cr = rank(ProjQ∪S), then for any Z∥∥ProjQ ((I−αlA
∗A)ProjS(Z))

∥∥6 Ucr +Lcr

1−Lr
‖ProjS(Z)‖ . (4.30)

With Lemma 4.3, we prove the convergence guarantee for CGIHT projected for matrix completion,
Alg. 5. Unlike in the discrete compressed sensing problem, CGIHT projected for matrix completion suf-
fers from additional computational burdens and reduced empirical performance. Although we require
the projected version in order to ensure orthogonality and establish a convergence result, the non pro-
jected version, CGIHT for matrix completion (Alg. 4), is recommended for implementations.
Proof of Theorem 2.5. The early steps of the proof of Thm. 2.5 follows the proof of Thm. 2.2 through
to (4.15), giving the upper bound

‖Xl−X‖6 2‖ProjUl∪U (Wl−1−X)‖. (4.31)

We seek a bound on ‖ProjUl∪U (Wl−1−X)‖ which initially is split into two cases based on the value of
Restart flag. When Restart flag = 1

Wl−1−X = Xl−1−X +αl−1Rl−1 = (I−αl−1A
∗A)(Xl−1−X)+αl−1A

∗(e).

Applying the triangle inequality, Lem. 4.3, and Def. 2.4,

‖ProjUl∪U (Xl−1−X +αl−1Rl−1)‖6 ‖ProjUl∪U

(
(I−αl−1A

∗A)ProjUl−1∪U (Xl−1−X)
)
‖

+ |αl−1|‖ProjUl∪UA ∗(e)‖

6
U3r +L3r

1−Lr
‖Xl−1−X‖+ (1+U2r)

1/2

1−Lr
‖e‖. (4.32)

Therefore, if Restart flag = 1,

‖ProjUl∪U (Wl−1−X)‖6 U3r +L3r

1−Lr
‖Xl−1−X‖+ (1+U2r)

1/2

1−Lr
‖e‖. (4.33)

On the other hand, when Restart flag = 0 (continuing with the same column space)

Wl−1−X =Xl−1−X+αl−1ProjUl−1
Pl−1 =Xl−1−X+αl−1+αl−1Rl−1−αl−1

(
Rl−1−ProjUl−1

(Pl−1)
)
.

(4.34)

32 of 40 JEFFREY D. BLANCHARD, JARED TANNER, AND KE WEI

When Restart flag = 0, the restarting parameter gives the bound,∥∥∥Rl−1−ProjUl−1
(Pl−1)

∥∥∥
‖ProjUl−1

(Rl−1)‖
6 θ < θ0 = c

(
U3r +L3r

1+U2r

)
. (4.35)

Writing Rl−1 = A ∗(A (X−Xl−1))+A ∗(e), (4.35) leads to∥∥∥Rl−1−ProjUl−1
(Pl−1)

∥∥∥6 θ‖ProjUl−1
(Rl−1)‖

6 θ‖ProjUl−1
(A ∗(A (X−Xl−1))+A ∗(e))‖

6 θ

(
‖ProjUl−1∪U (A

∗(A (X−Xl−1)))‖+‖ProjUl−1
(A ∗(e))‖

)
6 θ

(
(1+U2r)‖Xl−1−X‖+(1+Ur)

1/2‖e‖
)

6 c(U3r +L3r)

(
‖Xl−1−X‖+ (1+Ur)

1/2

1+U2r
‖e‖

)
. (4.36)

So, in this case with Restart flag = 0,

‖ProjUl∪U (Wl−1−X)‖6 ‖ProjUl∪U (Xl−1−X +αl−1Rl−1)‖+ |αl−1|
∥∥∥Rl−1−ProjUl−1

(Pl−1)
∥∥∥

6

(
U3r +L3r

1−Lr
‖Xl−1−X‖+ (1+U2r)

1/2

1−Lr
‖e‖

)

+ c
U3r +L3r

1−Lr

(
‖Xl−1−X‖+ (1+Ur)

1/2

1+U2r
‖e‖

)

6 (1+ c)
U3r +L3r

1−Lr
‖Xl−1−X‖

+
(1+U2r)

1/2

1−Lr

(
1+ c

U3r +L3r

1+U2r

)
‖e‖. (4.37)

Clearly, the bound on ‖ProjUl∪U (Wl−1−X)‖ from (4.33) is smaller than the bound in (4.37); thus,
(4.37) applies to both cases. Therefore, with

µ = 2(1+ c)
U3r +L3r

1−Lr
and ξ = 2

(1+U2r)
1/2

1−Lr
(1+θ0) ,

equations (4.31), (4.33), and (4.37) combine to show that

‖Xl−X‖6 µ‖Xl−1−X‖+ξ‖e‖. (4.38)

If µ < 1, a straightforward induction argument with (4.38) provides the desired final bound,

‖Xl−X‖6 µ
l‖X0−X‖+ ξ

1−µ
‖e‖. (4.39)

�

CONJUGATE GRADIENT ITERATIVE HARD THRESHOLDING 33 of 40

The restarting parameter θ plays an important role in CGIHT projected for matrix completion. This
theorem requires θ < cU3r+L3r

1+U2r
and that µ = 2(1+ c)U3r+L3r

1−Lr
< 1. First, consider the two extreme cases

of c = 0 or c = ∞. When c = 0, the restarting condition is met at every iteration and the algorithm
is identical to NIHT for matrix completion. Moreover, the sufficient condition µ = 2U3r+L3r

1−Lr
< 1 is

identical to the sufficient condition for NIHT for matrix completion [77]. At the other extreme, the
algorithm will never restart and instead will project the observations y onto the column space spanned
by the r principal left singular vectors of A ∗(y). This is the one step hard thresholding algorithm and
the theorem could only apply when A is an isometry, i.e. U3r = L3r = 0. For the values of c ∈ (0,∞),
CGIHT traces between matrix completion versions of NIHT and HTP. As c increases, the sufficient
condition µ < 1 is satisfied by a smaller set of linear operators A while the algorithm is permitted to take
more conjugate gradient steps on each subspace. Eventually, the subspace restricted conjugate gradient
method will force ‖ProjUl−1

Rl−1‖ to a small enough value that the restarting criterion is satisfied. In
other words, the parameter c determines an error tolerance for a projection of y onto each subspace
spanned by Ul−1.

The proof of Thm. 2.3 follows the proof of Thm. 2.5 and is omitted for brevity.

5. Conclusion and future directions

The large scale testing of CGIHT on synthetic problems in Sec. 3 shows it to typically outperform exist-
ing hard thresholding algorithms for each of compressed sensing, row sparse approximation, and matrix
completion. Though no single variant of CGIHT is universally superior for each of these questions,
their differing performance reflects the dominant aspects of the problem. Despite CGIHT restarted for
compressed sensing having a per iteration complexity that is modestly lower than that of CGIHT, it is
the latter that is typically faster in practice and possesses a larger recovery region. In contrast, CGIHT
restarted shows performance superior to that of CGIHT for row sparse approximation where the dis-
crete nature of the problem is further emphasized; again, the superior performance is both in terms of
recovery time and a unusually large recovery region, compared to other hard thresholding algorithms,
as the number of vectors is increased. For matrix completion it is the non restarted CGIHT that is fastest
and with the largest recovery region. CGIHT projected is not observed to be superior for any of the
problems tested, but we conjecture that it may well be superior for compressed sensing and row sparse
approximation once the problem size is sufficiently large so that the discrete support set restarting con-
dition would be activated for an increasing fraction of the iterates which would degrade the asymptotic
convergence rate. However, it is worth noting that this conjecture is not realized for compressed sensing
problems tested at ambient dimensions up to a million, nor for the largest matrix completion problems
tested here.

The efficacy of CGIHT across these three problems suggests it may well be similarly effective for
other constrained underdetermined linear systems of equations. In future work we suggest extending
CGIHT to related problems such as separation of sparse outliers from low rank matrices and estima-
tion of sparse inverse covariance matrices. In a different direction, the non restated variant of CGIHT
was typically the best performing variant, but unfortunately lacks a recovery guarantee. Developing a
recovery guarantee is likely to require an analysis of the fraction of a support set or subspace correctly
identified at each iteration. It may also be possible to extend CGIHT to include exploration of larger sup-
port sets or subspaces analogous to CoSaMP [69], ADMiRA [60], and the ALPS family of algorithms
[25, 58] without the negative side effects.

Though CGIHT has been observed to, overall, be more computationally efficient than other hard
thresholding algorithms, a direct comparison with other classes of algorithms is needed in order to

34 of 40 JEFFREY D. BLANCHARD, JARED TANNER, AND KE WEI

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ=m/n

ρ
=

k
/m

Recovery phase transition for (N,B)

CGIHT
l
1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ = p/mn

ρ
 =

 r
(m

+
n

−
r)

/p

Recovery phase transition for (G,N)

CGIHT
NNM

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ = p/mn

r/
m

Recovery phase transition for (G,N)

CGIHT
NNM

(a) (b) (c)
FIG. 9. 50% recovery probability logistic regression curves: (a) CGIHT for ensemble (N ,B) with n= 212 (black) and the analytic
`1 regularization phase transition [31], (b) CGIHT for ensemble (G ,N) with n = m = 80 (black) and the analytic Schatten-1
regularization phase transition [1, 38], (c) the same as (b) with a different vertical axis.

determine its overall efficacy. Particularly important classes of algorithms are convex regularizations,
see for instance [3–6, 18, 44, 50, 65, 71, 79, 82, 84, 86], and approximate message passing algorithms
(AMP), see for instance [26, 36, 38–40, 52] and references therein. As a preliminary comparison of
recovery ability, we contrast the empirically observed phase transition of CGIHT with Gaussian sens-
ing and the analytic asymptotic phase transitions of the convex regularizations and AMP algorithms.
Fig. 9(a) shows the 50% recovery phase transition of CGIHT for (N ,B) with the analytic phase tran-
sition [1, 31, 33, 38] associated with solving (2.10) where ‖y−Az‖2 = 0. For the most challenging,
binary, vector ensemble, the recovery phase transition of CGIHT is strictly below that of `1 regulariza-
tion, although the relative difference between the recovery phase transitions decreases as m/n moves
toward zero. In this region of greatest interest for applications, the similar phase transitions suggest the
dominant difference between the algorithms will be recovery time rather than recovery ability. Fig. 9(b)
shows the 50% recovery phase transition of CGIHT for (G ,N) with the analytic phase transition [1, 35]
associated with solving (2.12) where ‖y−A (z)‖2 = 0. In contrast with the compressed sensing setting,
the recovery phase transition for CGIHT is uniformly above that of solving (2.12). In particular, this
difference is enhanced as p/mn decreases to zero, which is again the region of greatest interest for appli-
cations. This indicates that CGIHT, as well as other iterative hard thresholding algorithms, see Fig. 7,
are less reliant on the smallness of the rank of the measured matrix. Fig. 9(c) shows the same curves as
in Fig. 9(b), though with the vertical axis r/m, to aid in comparison with other manuscripts in the matrix
completion literature which use this alternative scaling. Although large-scale empirical comparisons
of CGIHT and algorithms designed for solving (2.12) are not currently available, preliminary compar-
isons with some existing software indicate CGIHT is dramatically more efficient than some specifically
designed algorithms for (2.12) such as SVT [18].

Funding

This work was supported by the National Science Foundation [DMS 1112612 to JDB], a Harris Faculty
Fellowship [2013-2014 to JDB], an Nvidia Professor Partnership [to JT], and the China Scholarship
Council [to KW].

REFERENCES 35 of 40

Acknowledgment

The authors acknowledge the use of the IRIDIS High Performance Computing Facility, and associated
support services at the University of Southampton, in the completion of this work.

References

[1] AMELUNXEN, D., LOTZ, M., MCCOY, M. B. & TROPP, J. A. (2014) Living on the edge: A geo-
metric theory of phase transitions in convex optimization. Information and Inference: A Journal
of the IMA, 3(3), 224–294.

[2] BAH, B. & TANNER, J. (2010) Improved bounds on restricted isometry constants for Gaussian
matrices. SIAM Journal on Matrix Analysis, 31(5), 2882–2898.

[3] BECK, A. & TEBOULLE, M. (2009) A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM J. Imaging Sci., 2(1), 183–202.

[4] (2014) A fast dual proximal gradient algorithm for convex minimization and applications.
Oper. Res. Lett., 42(1), 1–6.

[5] BERG, E. V. D. & FRIEDLANDER, M. P. (2008) Probing the Pareto frontier for basis pursuit
solutions. SIAM Journal on Scientific Computing, 31(2), 890–912.

[6] BIOUCAS-DIAS, J. M. & FIGUEIREDO, M. A. T. (2007) A new TwIST: Two-step iterative
shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Process., 16(12),
2992–3004.

[7] BLANCHARD, J. D., CARTIS, C. & TANNER, J. (2011) Compressed sensing: How sharp is the
restricted isometry property?. SIAM Review, 53(1), 105–125.

[8] BLANCHARD, J. D., CARTIS, C., TANNER, J. & THOMPSON, A. (2011) Phase transitions for
greedy sparse approximation algorithms. Appl. Comput. Harmon. Anal., 30(2), 188–203.

[9] BLANCHARD, J. D., CERMAK, M., HANLE, D. & JING, Y. (2014) Greedy algorithms for joint
sparse recovery. IEEE Trans. Sig. Proc., 62(7), 1694–1704.

[10] BLANCHARD, J. D. & TANNER, J. (2013a) GAGA: GPU accelerated greedy algorithms. Version
1.1.0. [Online]. Available: www.gaga4cs.org.

[11] (2013b) GPU accelerated greedy algorithms for compressed sensing. Math. Prog. Com-
putation, 5(3), 267–304.

[12] (2015) Performance comparisons of greedy algorithms in compressed sensing. Num. Lin.
Alg. Appl., 22(2), 254–282.

[13] BLANCHARD, J. D., TANNER, J. & WEI, K. (2015) Conjugate gradient iterative hard thresh-
olding: Observed noise stability for compressed sensing. IEEE Trans. Signal Processing, 63(2),
528–537.

[14] BLUMENSATH, T. (2012) Accelerated iterative hard thresholding. Signal Processing, 92, 752–756.

36 of 40 REFERENCES

[15] BLUMENSATH, T. & DAVIES, M. E. (2009) Iterative hard thresholding for compressed sensing.
Appl. Comput. Harmon. Anal., 27(3), 265–274.

[16] (2010) Normalised iterative hard thresholding; guaranteed stability and performance.
IEEE Selected Topics in Signal Processing, 4(2), 298–309.

[17] BRUCKSTEIN, A. M., DONOHO, D. L. & ELAD, M. (2009) From sparse solutions of systems of
equations to sparse modeling of signals and images. SIAM Review, 51(1), 34–81.

[18] CAI, J.-F., CANDÈS, E. J. & SHEN, Z. (2010) A singular value thresholding algorithm for matrix
completion. SIAM Journal on Optimization, 20(4), 1956–1982.

[19] CANDÈS, E. & RECHT, B. (2009) Exact matrix completion via convex optimization. Foundations
of Comp. Math., 9(6), 717–772.

[20] CANDÈS, E. J. (2006) Compressive sampling. in International Congress of Mathematicians. Vol.
III, pp. 1433–1452. Eur. Math. Soc., Zürich.

[21] CANDÈS, E. J., ROMBERG, J. & TAO, T. (2006) Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory, 52(2),
489–509.

[22] CANDÈS, E. J. & TAO, T. (2005) Decoding by linear programming. IEEE Trans. Inform. Theory,
51(12), 4203–4215.

[23] (2006) Near-optimal signal recovery from random projections: Universal encoding strate-
gies?. IEEE Trans. Inform. Theory, 52(12), 5406–5425.

[24] CARTIS, C. & THOMPSON, A. (2015) A new and improved quantitative recovery analysis for
iterative hard thresholding algorithms in compressed sensing. IEEE Trans. Inform. Theory, 61(4),
1–24.

[25] CEVHER, V. (2011) An ALPS view of sparse recovery. in Acoustics Speech and Signal Processing
(ICASSP), 2011 IEEE International Conference on, pp. 5808 –5811.

[26] CHANDAR, V., SHAH, D. & WORNELL, G. W. (2010) A simple message-passing algorithm for
compressed sensing. in Information Theory Proceedings (ISIT), 2010 IEEE International Sympo-
sium on, pp. 1968–1972.

[27] CHEN, S. S., DONOHO, D. L. & SAUNDERS, M. A. (2001) Atomic decomposition by basis
pursuit. SIAM Rev., 43(1), 129–159 (electronic), Reprinted from SIAM J. Sci. Comput. 20 (1998),
no. 1, 33–61.

[28] DAI, W. & MILENKOVIC, O. (2009) Subspace pursuit for compressive sensing signal reconstruc-
tion. IEEE Trans. Inform. Theory, 55(5), 2230–2249.

[29] DAI, W., MILENKOVIC, O. & KERMAN, E. (2011) Subspace evolution and transfer (SET) for
low-rank matrix completion. IEEE Transactions on Signal Processing, 59(7), 3120–3132.

[30] DEVOLDER, O., GLINEUR, F. & NESTEROV, Y. (2014) First-order methods of smooth convex
optimization with inexact oracle. Mathematical Programming Series A.

REFERENCES 37 of 40

[31] DONOHO, D. L. (2004) Neighborly polytopes and sparse solution of underdetermined linear equa-
tions. Technical Report, Department of Statistics, Stanford University.

[32] (2006a) Compressed sensing. IEEE Trans. Inform. Theory, 52(4), 1289–1306.

[33] (2006b) High-dimensional centrally symmetric polytopes with neighborliness propor-
tional to dimension. Discrete Comput. Geom., 35(4), 617–652.

[34] DONOHO, D. L. & GAVISH, M. (2014) Minimax risk of matrix denoising by singular value thresh-
olding. Ann. Statist., 42(6), 2413–2440.

[35] DONOHO, D. L., GAVISH, M. & MONTANARI, A. (2013) The phase transition of matrix recovery
from Gaussian measurements matches the minimax MSE of matrix denoising. Proc. Natl. Acad.
Sci. USA, 110(21), 8405–8410.

[36] DONOHO, D. L., JOHNSTONE, I. & MONTANARI, A. (2013) Accurate prediction of phase transi-
tions in compressed sensing via a connection to minimax denoising. IEEE Trans. Inform. Theory,
59(6), 3396–3433.

[37] DONOHO, D. L. & MALEKI, A. (2010) Optimally tuned iterative thresholding algorithms for
compressed sensing. IEEE Selected Topics in Signal Processing, 4(2), 330–341.

[38] DONOHO, D. L., MALEKI, A. & MONTANARI, A. (2009) Message-passing algorithms for com-
pressed sensing. Proc. Natl. Acad. Sci. USA, 106(45), 18914–18919.

[39] (2010a) Message passing algorithms for compressed sensing: I. motivation and construc-
tion. in Proc. IEEE Inform. Theory Workshop.

[40] (2010b) Message Passing Algorithms for Compressed Sensing: II. analysis and validation.
in Proc. IEEE Inform. Theory Workshop.

[41] DONOHO, D. L. & TANNER, J. (2005) Sparse nonnegative solution of underdetermined linear
equations by linear programming. Proc. Natl. Acad. Sci. USA, 102(27), 9446–9451 (electronic).

[42] (2009) Counting faces of randomly projected polytopes when the projection radically
lowers dimension. J. AMS, 22(1), 1–53.

[43] ELDAR, Y. C. & KUTYNIOK, G. (2012) Compressed sensing: Theory and applications. Cam-
bridge University Press.

[44] FIGUEIREDO, M. A. T., NOWAK, R. D. & WRIGHT, S. J. (2007) Gradient projection for sparse
reconstruction: Application to compressed sensing and other inverse problems. IEEE Selected
Topics in Signal Processing, 1(4), 586–597.

[45] FOUCART, S. (2011a) Hard thresholding pursuit: An algorithm for compressive sensing. SIAM
Journal on Numerical Analysis, 49(6), 2543–2563.

[46] (2011b) Recovering jointly sparse vectors via hard thresholding pursuit. in Proc. of
SAMPTA. Online.

38 of 40 REFERENCES

[47] FOUCART, S. (2012) Sparse recovery algorithms: Sufficient conditions in terms of restricted isom-
etry constants. in Approximation Theory XIII: San Antonio 2010, ed. by M. Neamtu, & L. Schu-
maker, vol. 13 of Springer Proceedings in Mathematics, pp. 65–77. Springer New York.

[48] FOUCART, S. & RAUHUT, H. (2013) A mathematical introduction to compressive sensing.
Birkhauser.

[49] GARG, R. & KHANDEKAR, R. (2009) Gradient descent with sparsification: An iterative algorithm
for sparse recovery with restricted isometry property. in ICML ’09: Proceedings of the 26th Annual
International Conference on Machine Learning, pp. 337–344, New York, NY, USA. ACM.

[50] GOLDSTEIN, T. & SETZER, S. (2004) High-order methods for basis pursuit. Computational
applied mathematics (CAM) Technical Report, Department of Mathematics, University of Cali-
fornia at Los Angeles.

[51] GREENBAUM, A. (1997) Iterative methods for solving linear systems, vol. 17 of Frontiers in
Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.

[52] GUO, C. & DAVIES, M. E. (2015) Near optimal compressed sensing without priors: Parametric
SURE approximate message passing. IEEE Trans. Signal Processing, 63(8), 2130–2141.

[53] HALDAR, J. P. & HERNANDO, D. (2009) Rank-constrained solutions to linear matrix equations
using PowerFactorization. IEEE Signal Processing Letters, 16(7), 584 –587.

[54] HESTENES, M. R. & STIEFEL, E. (1952) Methods of conjugate gradients for solving linear sys-
tems. Journal of Research of the National Bureau of Standards, 49, 409436.

[55] HORN, R. A. & JOHNSON, C. R. (1990) Matrix analysis. Cambridge University Press.

[56] JAIN, P., MEKA, R. & DHILLON, I. (2010) Guaranteed rank minimization via singular value
projection. Proc. Neural Information Processing Systems Conf. (NIPS), pp. 937–945.

[57] KESHAVAN, R. H., MONTANARI, A. & OH, S. (2010) Matrix completion from a few entries.
IEEE Trans. Inform. Theory, 56(6), 2980–2998.

[58] KYRILLIDIS, A. & CEVHER, V. (2012) Matrix ALPS: Accelerated low rank and sparse matrix
reconstruction. in Statistical Signal Processing Workshop (SSP), 2012 IEEE, pp. 185 –188.

[59] KYRILLIDIS, A. & CEVHER, V. (2014) Matrix recipes for hard thresholding methods. Journal of
Mathematical Imaging and Vision, 48(2), 235–265.

[60] LEE, K. & BRESLER, Y. (2010) ADMiRA: Atomic decomposition for minimum rank approxima-
tion. IEEE Trans. Inform. Theory, 56(9), 4402 –4416.

[61] LEVIATAN, D. & TEMLYAKOV, V. N. (2006) Simultaneous approximation by greedy algorithms.
Adv. Comput. Math., 25(1-3), 73–90.

[62] LEWIS, A. S. & MALICK, J. (2008) Alternating projections on manifolds. Mathematics of Oper-
ations Research, 33, 216–234.

[63] LUTOBORSKI, A. & TEMLYAKOV, V. N. (2003) Vector greedy algorithms. J. Complexity, 19(4),
458–473.

REFERENCES 39 of 40

[64] MA, S. Q., GOLDFARB, D. & CHEN, L. F. (2011a) Convergence of fixed-point continuation
algorithms for matrix rank minimization. Foundations of Computational Mathematics, 11(2), 183–
210.

[65] (2011b) Fixed point and Bregman iterative methods for matrix rank minimization. Math-
ematical Programming Series A., 128(1), 321–353.

[66] MALEKI, A. (2009) Coherence analysis of iterative thresholding algorithms. in Communication,
Control, and Computing, 2009. Allerton 2009. 47th Annual Allerton Conference on, pp. 236 –243.

[67] MEYER, G., BONNABEL, S. & SEPULCHRE, R. (2011) Linear regression under fixed-rank con-
straints: a Riemannian approach. in Proc. of the 28th International Conference on Machine Learn-
ing (ICML2011), Bellevue (USA).

[68] NATARAJAN, B. K. (1995) Sparse approximate solutions to linear systems. SIAM J. Comput.,
24(2), 227–234.

[69] NEEDELL, D. & TROPP, J. A. (2009) CoSaMP: Iterative signal recovery from incomplete and
inaccurate samples. Appl. Comp. Harm. Anal., 26(3), 301–321.

[70] NESTEROV, Y. (2004) Introductory lectures on convex optimization : A basic course, Applied
optimization. Kluwer Academic Publ., Boston, Dordrecht, London.

[71] (2007) Gradient methods for minimizing composite objective functions. CORE Discus-
sion Paper 2007/76, Center for Operations Research and Econometrics, Université Catholique de
Louvain, Belgium.

[72] POWELL, M. J. D. (1976) Some convergence properties of the conjugate gradient method. Math-
ematical Programming, 11, 42–49.

[73] RAUHUT, H., ROMBERG, J. & TROPP, J. A. (2012) Restricted isometries for partial random
circulant matrices. Appl. Comput. Harmon. Anal., 32(3), 242–254.

[74] RECHT, B., FAZEL, M. & PARRILO, P. A. (2010) Guaranteed minimum rank solutions to linear
matrix equations via nuclear norm minimization. SIAM Review, 52(3), 471–501.

[75] RECHT, B., XU, W. & HASSIBI, B. (2011) Null space conditions and thresholds for rank mini-
mization. Mathematical Programming Series B, 127, 175–211.

[76] RUDELSON, M. & VERSHYNIN, R. (2008) On sparse reconstruction from Fourier and Gaussian
measurements. Comm. Pure Appl. Math., 61(8), 1025–1045.

[77] TANNER, J. & WEI, K. (2013) Normalized iterative hard thresholding for matrix completion.
SIAM J. Scientfic Comput., 35(5), S104–S125.

[78] TEMLYAKOV, V. N. (2004) A remark on simultaneous greedy approximation. East J. Approx.,
10(1-2), 17–25.

[79] TOH, K.-C. & YUN, S. (2010) An accelerated proximal gradient algorithm for nuclear norm
regularized least squares problems. Pacific Journal of Optimization, 6(3), 615–640.

40 of 40 REFERENCES

[80] TROPP, J. A. (2006) Algorithms for simultaneous sparse approximation. Part II: Convex relax-
ation. Signal Processing, 86, 589–602.

[81] TROPP, J. A., GILBERT, A. C. & STRAUSS, M. J. (2006) Algorithms for simultaneous sparse
approximation. Part I: Greedy pursuit. Signal Processing, 86, 572–588.

[82] TROPP, J. A. & WRIGHT, S. J. (2010) Computational methods for sparse solution of linear inverse
problems. Proceedings of the IEEE, 98(6), 948–958.

[83] WEI, K. (2014) Efficient algorithms for compressed sensing and matrix completion. Doctoral
thesis, University of Oxford.

[84] WRIGHT, S. J., NOWAK, R. D. & FIGUEIREDO, M. A. T. (2008) Sparse reconstruction by sepa-
rable approximation. Proc. International Conference on Acoustics, Speech, and Signal Processing.

[85] XU, W. & HASSIBI, B. (2008) Precise stability phase transitions for `1 minimization: A unified
geometric framework. IEEE Trans. Inform. Theory, 57(10), 6894–6919.

[86] YIN, W., OSHER, S., GOLDFARB, D. & DARBON, J. (2008) Bregman iterative algorithms for
`1-minimization with applications to compressed sensing. SIAM Journal on Imaging Science, 1(1),
143–168.

[87] YUAN, Y. X. (1993) Analysis of conjugate gradient method. Optimization Methods and Software,
2, 19–29.

